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The Decision & Control Lab at Politecnico di Bari

The D&C Lab has as its major objectives the promotion of the results obtained in the

field of the scientific research in decision and control – achieved in collaboration with

private and public partners, in a regional, national, and international context - and the

advancement of technology transfer of these research results.

Mission
Fostering the education of undergraduate/graduate students
Supporting courses lab activities
Performing theoretical/applied research in systems, control optimization, and
decision-making

Recent research areas
smart cities, smart governance and smart mobility
smart factories and industry 4.0
smart manufacturing (decentralized/distributed decision and control algorithms, logistics)
energy management and energy e�iciency (public and private sectors)
decision-making techniques (supplier selection, re-engineering, ...)
transport optimization (goods, waste, passengers)
modeling, estimation and analysis of complex dynamical system.

Webpage:
http://dclab.poliba.it
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Motivations and Objectives

Since the end of 2019, the SARS-CoV-2 coronavirus has caused more
than 2.5 million deaths and 110 million of confirmed cases, thus
resulting the most impacting pandemic in the recent decades.
Currently vaccinations have not yet lead to mass coverage, hence,
the main control actions still rely on non-pharmaceutical
interventions (NPIs), such as mobility restrictions and social
distancing.

The work presented in this talk is motivated by the emerging need for
developing e�ective methods to support policy makers in e�iciently
mitigating the e�ects of COVID-19 pandemic contagions.
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Literature Review

Dynamical Modeling of COVID-19 Pandemic

The recent research trends in the COVID-19 framework have been
devoted to disease transmission modeling and control, with the aim
of suppressing, or at least mitigating, the spread of infections
[Giordano et al., 2020, Lemos-Paião et al., 2020].
In fact, several di�erent models are available in the literature to
describe the COVID-19 dynamics [Zhao and Chen, 2020].
Some works focus on the analysis of the pandemic at a regional
level, thus allowing to take into account the economic and social
di�erences existing within almost any country
[Della Rossa et al., 2020, Scharbarg et al., 2020,
Brugnano et al., 2020].
Most papers generally lack an accurate identification of the
pandemic’s dynamical model parameters.
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Literature Review

Control Strategies for COVID-19 Mitigation
Very few models presented in the related literature are used to
investigate the e�ects of control strategies (simplistic what-if
simulations of future scenarios).
These models do not provide a feedback control method to properly
identify the most e�ective mitigation action(s) and employ them in
a real time dynamical framework [Köhler et al., 2020].
Some works propose open-loop on/o� social distancing measures or
fast switching policies [Morato et al., 2020, Bin et al., 2020].
In most of the modeling and control approaches related to
COVID-19, a perfect knowledge of parameters is assumed, ignoring
uncertainty.
The optimal control theory has been already successfully applied to
identify the best action strategies for other diseases
[Zhao and Chen, 2020].
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Contribution to the Literature

We present a novel time-varying epidemiological model, that is
designed in order to allow a robust parameters’ identification.
This model leverages people’s mobility in di�erent categories to
represent the time dependency of the infection rate.
Based on this model, we propose a control approach that allows
avoiding the healthcare system to be overloaded.
Our approach is also able to take into account the economic
impacts of the designed control strategies.
We directly include uncertainty on the parameters in the model by
considering the variation of the infection’s spreading parameters.
Our approach is able to simultaneously take into account the
specific mitigation strategies undertaken in a diversified
multi-region scenario.

[Carli et al., 2020, Scarabaggio et al., b, Scarabaggio et al., a]
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Contribution to the Literature

The results presented in this talk have been published in the following
papers:

Carli, R., Cavone, G., Epicoco, N., Scarabaggio, P., and Dotoli, M. (2020).
Model predictive control to mitigate the covid-19 outbreak in
a multi-region scenario.
Annual Reviews in Control, 50:373 – 393.

Scarabaggio, P., Carli, R., Cavone, G., Epicoco, N., and Dotoli, M.
Modeling, estimation, and analysis of covid-19 secondary waves:
the case of the italian country.
In 2021 29th Mediterranean Conference on Control and Automation (under
review).

Scarabaggio, P., Carli, R., Cavone, G., Epicoco, N., and Dotoli, M.
Stochastic optimal control strategies to mitigate covid-19
secondary waves.
IEEE Transaction on Automation Science and Engineering (under review).
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Compartmental Models in Epidemic Modeling

The first fundamental mathematical model for
epidemic diseases was formulated by Kermack
and McKendrick in the early 20th century
[Kermack and McKendrick, 1927].

This was the first compartmental model
applied to epidemic modeling!

Today, compartmental models are widely used to model the
dynamics of infectious diseases.
In these models, the population is divided into compartments and
people may flow between these with characteristic rates.
These models are usually defined using ordinary di�erential
equations (ODEs) or finite di�erence equations.
Epidemic models may be defined in a deterministic or stochastic
framework. The la�er class of models is more realistic but more
complex.
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SI Model

Susceptible-Infectious (SI) model –> useful for single-wave epidemics
where Infectious people cannot be healed (e.g., HIV).
In the SI model, people flow from the Susceptible to the Infectious
compartment with a characteristic Infection rate β.

dS
dt

= −βIS
N

dI
dt

=
βIS
N

S: Number of Susceptible individuals
I: Number of Infectious individuals
β: Infection rate
N: Total population size

The characteristics of compartmental models is that the dimension of
the population is constant N = S(t) + I(t).

15 97



SI Model

Since the total population cannot change, we can disregard one
di�erential equation and analyze only the dynamics of:

dI
dt

=
β(N − I)I

N

that has the following analytic solution:

I(t) =
I(0)N

(N − I0)e−βt + I(0)

It is easy to prove that this model has two equilibrium points:

I = 0 and I = N

which correspond to the disease extinction (unstable equilibrium) and to
a fully infected population (asymptotically stable equilibrium),
respectively.
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SI Model

Example with β = 0.3, N = 1000 and I(0) = 1.
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SI Model

Example with β = 0.6, N = 1000 and I(0) = 1.
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SIS Model

Susceptible-Infectious-Susceptible (SIS) model –> useful for endemics
where a healed individual can be infected again (e.g., a common cold).
In the SIS model, people flow back to the Susceptible compartment
from the Infectious one a�er recovering.

dS
dt

= −βIS
N

+ γI

dI
dt

=
βIS
N
− γI

S: Number of Susceptible individuals
I: Number of Infectious individuals
β: Infection rate
γ: Recovery rate
N: Total population size: N = S(t) + I(t).
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SIS Model

Also in this case, since the total population cannot change, we can
remove one di�erential equation and analyze only the dynamics of:

dI
dt

=
β(N − I)I

N
− γI

that has the following analytic solution:

I(t) =

N
β (β − γ)

1 +
(

N
β
(β−γ)

I(0) − 1
)

e−(β−γ)t

It is easy to prove that this model has two equilibrium points:

I = 0 and I =
(β − γ)N

β

which correspond to the disease extinction (unstable equilibrium) and to
the maximum infection capacity (asymptotically stable equilibrium),
respectively.
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SIS Model

Example with β = 0.3, γ = 0.1, N = 1000 and I(0) = 1.
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SIS Model

Example with β = 0.6, γ = 0.1, N = 1000 and I(0) = 1.
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SIR Model

Susceptible-Infectious-Removed (SIR) model –> useful for single-wave
epidemics with natural immunity (e.g., measles, mumps, rubella).

dS
dt

= −βIS
N

dI
dt

=
βIS
N
− γI

dR
dt

= γI

S: Number of Susceptible individuals
I: Number of Infectious individuals
R: Number of Removed/Recovered individuals (immune or dead)
β: Infection rate
γ: Removing rate
N: Total population size: N = S(t) + I(t) + R(t).
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SIR Model

Since the total population cannot change, we can remove one equation
and study only two of the three variables.

However, we cannot solve these equations analytically in closed form!
The equation may be solved numerically using an engineering
computation so�ware.

Infinite equilibrium points with I = 0,
R = R∗ and S = N − R∗

For fixed parameters (β and γ) we can
solve numerically the system
equations and determine the final
epidemic size, i.e., the values S(+∞)
and R(+∞).
In the figure di�erent possible
dynamics are presented considering
an initial condition (R = 0)
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SIR Model

Example with β = 0.3, γ = 0.1, N = 1000, I(0) = 1 and R(0) = 0.
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SIR Model

Example with β = 0.6, γ = 0.1, N = 1000, I(0) = 1 and R(0) = 0.
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Basic Reproduction Number

How we can simply evaluate epidemics? –> basic reproduction number

Definition
The basic reproduction number R0 is the number of secondary infections
that a single infected person (I(0) = 1) would produce in a fully
susceptible (S = N − 1) population through the entire duration of the
infectious period.

For basics compartmental models, R0 provides a threshold condition for
the system dynamical behavior.
It can be demonstrated that:

If R0 < 1, we are not in the case of an epidemic (number of
infectious individuals decreases monotonically to 0).
If R0 > 1, we are in the case of an epidemic (we have a peak in the
number of infectious individuals before a reduction to 0).
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Basic Reproduction Number

Note that this definition is valid for simple homogeneous
autonomous models!
For a given model and fixed parameters, R0 is constant.

For the SIR model, R0 is defined by the following ratio:

R0 =
β

γ

For COVID-19, the basic reproduction number R0 is estimated between 2
and 6 (when no restrictions are applied).
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Basic Reproduction Number

Example with β = 0.3, γ = 0.1, N = 1000, I(0) = 100 and R(0) = 0.
R0 = β/γ = 3
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Basic Reproduction Number

Example with β = 0.3, γ = 0.6, N = 1000, I(0) = 100 and R(0) = 0.
R0 = β/γ = 0.5
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Basic Reproduction Number

So how can an epidemic be controlled?

1. Reduce S: vaccination (heard immunity).

2. Reduce β: wash hands, isolate sick persons, shut down public events, close
schools (enforce the decrease of R0 over time, such that R0 < 1).

3. Increase γ: be�er and faster clinical treatments, antivirals (enforce the
decrease of R0 over time, such that R0 < 1).

Variation of the COVID-19 R0 parameter in di�erent countries for the first two months of
the pandemic during the lockdown.
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Other SIR-Based Models

The SIR model can be modified for di�erent purposes:
Model the dynamics of births and deaths (this is o�en neglected).
Include time-varying parameters to take into account the e�ects of
seasonality and control policies.
Divide the population into di�erent groups based on infection status
(Exposed = infected but not yet infectious, Asymptomatic and
Symptomatic individuals).
Include additional compartments for vaccinated, dead, healed and
hospitalized individuals.
Model heterogeneity in age, regions or host species.

Other classical SIR-based models
Single epidemic wave: SIRD, SEIR, SITR and MSEIR.
Endemic equilibrium (the disease cannot be totally eradicated but
remains in the population): SISD, SEIS, SIRS and SIR (births/deaths).
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Single-Region SIRCQTHE Model

We propose a novel time-varying discrete-time epidemiological model
for the COVID-19 spread, named SIRCQTHE.

The overall population is divided into the following compartments:
Susceptible;
Infected (infected by someone and not yet contagious);
Removed (undetected and completely recovered);
Contagious (infected and undetected, contagious);
�arantined (infected and detected)
Threatened (either in a life-threatening or noncritical situation);
Healed (detected and completely recovered);
Extinct (detected dead).

We reasonably assume that the probability of becoming susceptible a�er
being healed is neglectable, since such a dynamics is much slower than
the actual main time constant of the model.
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Single-Region SIRCQTHE Model

Susceptible

Contagious

𝛽 𝑘 ሚ𝐶 𝑘 ሚ𝑆 𝑘 /𝑁

𝛾 ሚ𝐶 𝑘

𝜃 𝑘 ሚ𝐶 𝑘

𝜇𝑄 𝑘 𝜋𝑇 𝑘

𝜀 𝑇 𝑘 𝑇 𝑘

𝛿𝑄 𝑘

𝜆 ሚ𝐶 𝑘

Infected

𝜌ሚ𝐼 𝑘

Removed

Quarantined

Threatened

Healed

Extinct

Scheme of the SIRCQTHE model: the compartments whose state is directly observable are
indicated by filled rectangles.
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Single-Region SIRCQTHE Model

The model is composed of eight time-varying di�erence equations,
representing the dynamics of people’s flows between compartments.

S̃(k+1)= S̃(k)− β(k)C̃(k)S̃(k)/N

Ĩ(k+1)= Ĩ(k) + β(k)C̃(k)S̃(k)/N − ρĨ(k)

R̃(k+1)= R̃(k) + γC̃(k)

C̃(k+1)= C̃(k) + ρĨ(k)− (γ + θ(k) + λ)C̃(k)

Q(k+1)=Q(k) + θ(k)C̃(k) + πT(k)− (δ + µ)Q(k)

T(k+1)=T(k) + µQ(k) +λC̃(k)−(π +ε(T(k)))T(k)

H(k+1)=H(k) + δQ(k)

E(k+1)=E(k) + ε(T(k))T(k)

Susceptible

Contagious

𝛽 𝑘 ሚ𝐶 𝑘 ሚ𝑆 𝑘 /𝑁

𝛾 ሚ𝐶 𝑘

𝜃 𝑘 ሚ𝐶 𝑘

𝜇𝑄 𝑘 𝜋𝑇 𝑘

𝜀 𝑇 𝑘 𝑇 𝑘

𝛿𝑄 𝑘

𝜆 ሚ𝐶 𝑘

Infected

𝜌ሚ𝐼 𝑘

Removed

Quarantined

Threatened

Healed

Extinct

The symbol tilde identifies the state variables that cannot be directly
observed with a reasonable confidence, since no o�icial data is available.
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Multi-region SIRCQTHE Model

In order to correctly represent the COVID-19 spread in a multi-region
scenario, we can generalize our SIRCQTHE model to a case with M
regions with index i ∈M as follows.
Susceptible: individuals that can be infected but cannot infect others.

S̃i(k + 1) = S̃i(k)− βi(k) C̃i(k)S̃i(k)/N +
∑M

j=1 ξi,j(k)S̃j(k)

Susceptible: individuals that can infect others.

C̃i(k + 1) = C̃i(k) + ρi Ĩi(k)− (γi + θi(k) + λi) C̃i(k) +
∑M

j=1 ξi,j(k)C̃j(k)

We add a further term in the right-hand side of the di�erence
equations to take into account the migration of individuals
between regions.
In particular, we use the time-varying coe�icients ξi,j(k),∀i, j to
represent the inter-region mobility that a�ects the first and the
fourth equation of the model.
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Multi-region SIRCQTHE Model

We impose the balance of the
migrations flows between all regions:∑

j∈M
ξi,j(k) = 0, ∀i ∈M

hence, we assume that all parameters
ξi,j(k) (∀j 6= i) assume non-negative
values, thus:

ξi,i(k) = −
∑

j∈M\{i}

ξj,i(k), ∀i ∈M

SIRQTHE 1

𝜉1,2(𝑘)𝑆2(𝑘),
𝜉1,2(𝑘)𝐼2(𝑘)

SIRQTHE 2

SIRQTHE M

𝜉2,1(𝑘)𝑆1(𝑘),
𝜉2,1(𝑘)𝐼1(𝑘)

𝜉1,𝑀(𝑘)𝑆𝑀(𝑘),
𝜉1,𝑀(𝑘)𝐼𝑀(𝑘)

𝜉𝑀,1(𝑘)𝑆1(𝑘),
𝜉𝑀,1(𝑘)𝐼1(𝑘)

𝜉2,𝑀(𝑘)𝑆𝑀(𝑘),
𝜉2,𝑀(𝑘)𝐼𝑀(𝑘)

𝜉𝑀,2(𝑘)𝑆2(𝑘),
𝜉𝑀,2(𝑘)𝐼2(𝑘)

Scheme of the multi-region SIRCQTHE
model.
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Advantages of the SIRCQTHE Model

With respect to other models, the SIRCQTHE has several advantages.

We compress or eliminate some classes, and we disregard some
connections between the compartments. In this way we define a simpler
model to ensure a good accuracy in the fi�ing phase. Nevertheless, the
model is still able to represent all facets of the pandemic di�usion.

The model employs two terminal compartments (H and E) whose
characteristic parameters (δ and ε) are easy to calculate given the
observed variables.

The model only requires a minimal set of epidemiological data, which are
typically available in most occidental countries.

The infection rate (β(k)) is assumed time-varying since it depends on the
population behavior.

The death rate (ε(T(k))) is modeled as a function that depends on the
number of Threatened people.

The model has a broad applicability when it is considered in its
multi-region version.
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Italian Scenario

A�er the exponential growth of cases, from November 6 2020, the 20
Italian regions have been grouped into di�erent epidemiological
categories based on the monitoring of 21 contagion indicator.

The local restrictive measures are indicated by
di�erent colors.

White (minimal contagion, no control actions)
Yellow (low contagion, reduced control
actions)
Orange (intermediate contagion, significant
control actions)
Red (serious contagion, maximal control
actions)

The di�erent colors correspond to di�erent control actions (with
increasing enforcement in accordance with the density of the color) that
must be taken into account in the model since they a�ect the infection
rate β(k) (fi�ing phase)!
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Data Availability for the Italian Scenario

We employ the Italian Civil Protection Department epidemiological data,
including:

hospitalized people in a non-critical situation and hospitalized
people in a critical situation (T(k));
quarantined people (Q(k));
healed people (H(k));
deceased people (E(k));
swabs number (w(k)).

The main issue related to these data, as well as to almost all the data
similarly available worldwide, is that they represent a screenshot of
the epidemiological situation every day.
In other words, for each compartments, the available data only represent
the number of people in that compartment for each day, without any
indication about the flows within the di�erent categories.

Therefore some assumptions must be made to compute each parameter!
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Infection Rate β(k)

The value of the infection rate β(k) for the COVID-19 pandemic is usually
assumed between 0.25 and 0.8 in the absence of any social distancing policies
and people awareness.

Lockdown periods can significantly reduce this parameter!

To achieve a continuous fi�ing of the COVID-19 dynamics, we assume
that the variation of β(k) is related to the evolution of people’s mobility
in di�erent socio-economic categories.

A�er preliminary experiments, we assume a
linear relation between mobility in G
socio-economic categories and the infection
rate:

β(k) = β0 + β>m(k), ∀k ∈ K(h)

Susceptible

Contagious

𝛽 𝑘 ሚ𝐶 𝑘 ሚ𝑆 𝑘 /𝑁

𝛾 ሚ𝐶 𝑘

𝜃 𝑘 ሚ𝐶 𝑘

𝜇𝑄 𝑘 𝜋𝑇 𝑘

𝜀 𝑇 𝑘 𝑇 𝑘

𝛿𝑄 𝑘

𝜆 ሚ𝐶 𝑘

Infected

𝜌ሚ𝐼 𝑘

Removed

Quarantined

Threatened

Healed

Extinct

where β = (β1, ..., βG)> collects the infection rates corresponding to G categories and
m(k) = (m1(k), ...,mG(k))> collects the mobility levels in the [0,1] range (where 0
indicated no mobility and 1 indicated the nominal mobility).
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Infection Rate β(k)

We estimate the mobility levels through the Google Mobility Reports.
Data are obtained through Android smartphones.

We select the following G = 3
mobility categories:

Workplaces
Retail & recreation
Public transport

These reports show how visits and
length of stay at di�erent places
change compared to a baseline in
the di�erent categories.

Note the local minima appearing in
the various region a�er the DPCM
of november 6 and the
corresponding changes in color.
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Parameters ρ, λ and µ

Incubation rate ρ
The incubation rate ρ is the rate of
infected people that become
contagious and can infect other
people.
The incubation time is estimated
between 2 and 7 days, i.e.,
ρ ∈ [1/7, 1/2] and is selected with
the fi�ing algorithm described in
the sequel.

Susceptible

Contagious

𝛽 𝑘 ሚ𝐶 𝑘 ሚ𝑆 𝑘 /𝑁

𝛾 ሚ𝐶 𝑘

𝜃 𝑘 ሚ𝐶 𝑘

𝜇𝑄 𝑘 𝜋𝑇 𝑘

𝜀 𝑇 𝑘 𝑇 𝑘

𝛿𝑄 𝑘

𝜆 ሚ𝐶 𝑘

Infected

𝜌ሚ𝐼 𝑘

Removed

Quarantined

Threatened

Healed

Extinct

Hospitalization rates λ and µ
These parameters are the constant hospitalization rates. They
correspond to people recognized when severe symptomatic
conditions appears and to �arantined people that have to be
hospitalized, respectively.
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Healing Rate γ

Healing Rate γ
The healing rate of Contagious
people γ can be well represented
by a constant and in the literature
is typically approximately in 14
days.

Susceptible

Contagious

𝛽 𝑘 ሚ𝐶 𝑘 ሚ𝑆 𝑘 /𝑁

𝛾 ሚ𝐶 𝑘

𝜃 𝑘 ሚ𝐶 𝑘

𝜇𝑄 𝑘 𝜋𝑇 𝑘

𝜀 𝑇 𝑘 𝑇 𝑘

𝛿𝑄 𝑘

𝜆 ሚ𝐶 𝑘

Infected

𝜌ሚ𝐼 𝑘

Removed

Quarantined

Threatened

Healed

Extinct

Note that, in our model, we do not remove people from the
Contagious compartment when they are completely healed, but
already when they are not contagious or have a really low viral load.
In the literature, this period is estimated between 3 and 10 days, i.e.,
γ ∈ [1/10, 1/3] and is selected with the fi�ing algorithm described
in the sequel.
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Removing Rate of Quarantined People δ

The removing rate of �arantined people (not
needing hospitalization) δ can also be
approximated by a constant value.

Note that in some related works δ is
substituted with γ, assuming that an
individual is removed from the �arantined
compartment immediately a�er he/she
becomes not contagious.

Susceptible

Contagious

𝛽 𝑘 ሚ𝐶 𝑘 ሚ𝑆 𝑘 /𝑁

𝛾 ሚ𝐶 𝑘

𝜃 𝑘 ሚ𝐶 𝑘

𝜇𝑄 𝑘 𝜋𝑇 𝑘

𝜀 𝑇 𝑘 𝑇 𝑘

𝛿𝑄 𝑘

𝜆 ሚ𝐶 𝑘

Infected

𝜌ሚ𝐼 𝑘

Removed

Quarantined

Threatened

Healed

Extinct

However, in most countries, people are forced to be in quarantine even a�er being
clinically healed because the procedure requires two negative tests.

In Italy the quarantine period cannot be shorter than 10-14 days, depending on the
swabs’ tests results.

Thanks to the structure of the SIRCQTHE model, the healing rate δ can be expressed as
follows:

δ(k) = (H(k)− H(k − 1)) /Q(k).

In other words, δ may be obtained by simply observing data of �arantined and Healed
people.
Our experiments show that this parameter is on average constant!
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Detection Rate θ(k)

The detection rate θ(k) models the rate of Contagious people recognized and �arantined. It is
mainly related to the tracking and testing policies.

Numerous researches point out that the ratio r(k) = p(k)/w(k) between new daily
discovered cases p(k) and daily swabs w(k) is crucial to understand how the tracking
system is operating.
When r(k) increases, it means that the tracking system is not working well and the
pandemic is out of control.
Conversely, when r(k) is low, then few cases have been recognized compared to the
amount of swabs an the pandemic is under control.
These remarks hold when the tests are made stochastically, i.e., in a non selective way.

Some experiments lead to the selection of the
simplest possible relation:

θ(k) = θ0 (1− r(k))

Parameter θ is one of the most critical (and hard to
estimate) in COVID-19 modeling due to the high
number of asymptomatic people.

Susceptible

Contagious

𝛽 𝑘 ሚ𝐶 𝑘 ሚ𝑆 𝑘 /𝑁

𝛾 ሚ𝐶 𝑘

𝜃 𝑘 ሚ𝐶 𝑘

𝜇𝑄 𝑘 𝜋𝑇 𝑘

𝜀 𝑇 𝑘 𝑇 𝑘

𝛿𝑄 𝑘

𝜆 ሚ𝐶 𝑘

Infected

𝜌ሚ𝐼 𝑘

Removed

Quarantined

Threatened

Healed

Extinct

Note that, to the best of authors knowledge, no other approach in the related literature assumes θ
to be time-varying (θ is simplistically chosen to be constant).
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Recovery Rate π(k)

First stage of the COVID-19 pandemic
The recovery rate π(k) was far from being constant during the first
spread of COVID-19. The national healthcare system was not prepared
and did not have therapeutic procedures for patients with symptoms
never been seen before.
Therefore, to model this parameter in the first outbreak we employ the
following formulation (selected to best fit data among di�erent relation):

π(k) = a1 + a2 ka3

Second stage of the COVID-19 pandemic
A�er the implementation of new
standardized clinical approaches, we can
reasonably assume that this parameter is
constant.
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Contagious

𝛽 𝑘 ሚ𝐶 𝑘 ሚ𝑆 𝑘 /𝑁

𝛾 ሚ𝐶 𝑘

𝜃 𝑘 ሚ𝐶 𝑘

𝜇𝑄 𝑘 𝜋𝑇 𝑘

𝜀 𝑇 𝑘 𝑇 𝑘

𝛿𝑄 𝑘

𝜆 ሚ𝐶 𝑘

Infected

𝜌ሚ𝐼 𝑘
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Quarantined

Threatened

Healed
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Recovery Rate π(k)

Recovery rate π(k) for the first stage of the COVID-19 pandemic
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The healing rate π(k) for all the Italian regions from March to June 2020: real data (red
stars) and Single-region SIRQTHE model output (blue line).
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Death Rate ε(k)

Thanks to the structure of the SIRCQTHE model the death rate ε(k) can be
expressed as:

ε(k) = (E(k)− E(k − 1)) /T(k).

However, we can also foresee the death rate as follows.

First stage of the COVID-19 pandemic
This rate is not constant at the beginning of an epidemic and hopefully
decreases with time, due to the availability of new clinical treatments.
For the first outbreak we employ the following formulation (selected to best fit
data among di�erent relation):

ε(k) = a4 + exp (−a5 (k + a6))

Second stage of the COVID-19 pandemic
With the pandemic’s development, this
parameter becomes easily identifiable, and it
can be shown that it depends on how much the
healthcare system is under pressure and is
perfectly described by a linear relation:

ε(T(k)) = ε0 + ε1T(k)

Susceptible

Contagious

𝛽 𝑘 ሚ𝐶 𝑘 ሚ𝑆 𝑘 /𝑁

𝛾 ሚ𝐶 𝑘

𝜃 𝑘 ሚ𝐶 𝑘

𝜇𝑄 𝑘 𝜋𝑇 𝑘

𝜀 𝑇 𝑘 𝑇 𝑘

𝛿𝑄 𝑘

𝜆 ሚ𝐶 𝑘

Infected

𝜌ሚ𝐼 𝑘

Removed

Quarantined

Threatened

Healed

Extinct
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Death Rate ε(k)

Death rate ε(k) for the first stage of the COVID-19 pandemic
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The death rate ε(k) for all the Italian regions from March to June 2020: real data (red stars)
and Single-region SIRQTHE model output (blue line).
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Death Rate ε(k)

Death rate ε(k) for the second stage of the COVID-19 pandemic
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Identification of the Model Parameters

To estimate the described parameters we adopt an approach based on a
least-squares optimization technique.

Due to the high nonlinearity of the model and nonconvexity of the
resulting least-squares optimization technique, the fi�ing is nontrivial.

Therefore, we introduce a multi-step fi�ing procedure that considers at
each step a sub-model of the system.

During the identification we employ bounds on parameters to enforce the
scientific knowledge on the COVID-19 pandemic resulting on the related
literature.

Description Bound Reference
β0 Base infection rate S→ I 0.01− 0.1 [Della Rossa et al., 2020, Lemos-Paião et al., 2020, Ga�o et al., 2020, Wei et al., 2020]
βg Mobility coe�icients S→ I 0.1− 0.5 [Della Rossa et al., 2020, Lemos-Paião et al., 2020, Ga�o et al., 2020, Wei et al., 2020]
ρ Incubation rate I → C 0.15− 0.5 [Guan et al., 2020b, Lauer et al., 2020, Li et al., 2020, Pedersen and Meneghini, 2020]
θ0 Detection rate C→ Q 0.001− 0.5 [Ga�o et al., 2020, Della Rossa et al., 2020]
γ Healing rate C→ R 0.1− 0.3 [Della Rossa et al., 2020, Ehmann et al., 2020, Bai et al., 2020, Liu et al., 2020]
δ Healing rate Q→ H 0.01− 0.1 [Wei et al., 2020, Ga�o et al., 2020, Della Rossa et al., 2020, Romano et al., 2020]
λ Threatening rate C→ T 0.001− 0, 02 [Giordano et al., 2020, Ga�o et al., 2020, Della Rossa et al., 2020]
µ Threatening rate Q→ T 0.001− 0, 08 [Giordano et al., 2020, Della Rossa et al., 2020]
π Healing rate T → H 0.01− 0, 2 [Giordano et al., 2020, Ga�o et al., 2020, Della Rossa et al., 2020, Zhou et al., 2020]

54 97



Identification of the Model Parameters

First step
In the first step, we analyze the following sub-model for each region:

S̃(k+1)=S̃(k)−(β0 + β>m(k))C̃(k)S̃(k)/N

Ĩ(k+1)=Ĩ(k)−ρĨ(k) +(β0 + β>m(k))C̃(k)S̃(k)/N

R̃(k+1)=R̃(k) +γC̃(k)

C̃(k+1)=C̃(k) +ρĨ(k)−(γ +λ+θ0 (1−r(k)))C̃(k)

Z(k+1)=Z(k) +(λ+θ0 (1−r(k)))C̃(k)

where Z(k) = Q(k) + T(k) + H(k) + E(k) is the cumulative number of Infected people.
The estimation of the unknown parameters consists in minimizing the mean squared
error (MSE) of the model with respect to real data, as follows:

MSE(Ξ1) =
1
K

K∑
k=1

(
Ẑ(Ξ1, k)−Z(k)

Z(k)

)2

where Ξ1 = (β0,β, ρ, γ, θ0, λ, Ĩ(0), C̃(0)) collects the unknown parameters and K is
the number of samples defining the fi�ing horizon.
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Identification of the Model Parameters

Second step
In the second step, we estimate the constant healing rate for each
region by simply averaging the available data:

δ =
1
K

K∑
k=1

(
H(k)− H(k − 1)

Q(k)

)
This parameter resulted to be di�erent in the north of Italy and southern
regions. In the la�er regions, this parameter is significantly lower. This
can be explained with poorer and less organized healthcare systems.

Moreover, we estimate the death rate linear relation for each region by
minimizing the mean squared error (MSE) of the linear approximation
with respect to real data, that is by minimizing the following index:

MSE(ε0, ε1) =
1
K

K∑
k=1

(
(ε0 + ε1T(k))− ε(k)

ε(k)

)2
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Identification of the Model Parameters

Third step
Lastly, we analyze the following sub-model:

Q(k+1)=Q(k) +(θ0 (1−r(K))) C̃(k) +πT(k)−(δ +µ)Q(k)

T(k+1)=T(k) +µQ(k) +λC̃(k)−(π +ε(T(k)))T(k)

H(k+1)=H(k) +δQ(k)

and we minimize the following MSE for each region:

MSE(Ξ2) =
1
K

K∑
k=1

(
Q̂(Ξ2, k)− Q(k)

Q(k)

)2

+

(
T̂(Ξ2, k)− T(k)

T(k)

)2

+

(
Ĥ(Ξ2, k)− H(k)

H(k)

)2

to compute Ξ2 = (µ, π, θ0, λ) that collects the remaining parameters for
each region.
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Identification of the Model Parameters
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Identification of the Model Parameters
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Identification of the Model Parameters
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Identification of the Model Parameters
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Dynamical Identification of the Model Parameters

To foresee the evolution of the pandemic in the future, we additionally
implement the multi-step fi�ing procedure in a Dynamical Identification
(DI) algorithm that computes the model parameters observing them over
a fi�ing window (e.g., 3 weeks) and generates a forecast of system
variables over a forecasting period (e.g., one month).

The algorithm employs:
the parameters computed employing the
most recent data;
the mobility trends of di�erent categories
extrapolated from the Google mobility data;
the future control actions in term of mobility
reduction;
the model equations to determine the eight
state variables.

The algorithm cannot take into account unexpected changes in
governmental policies unless manually specified!
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D&C Lab First Dashboard(7 march - 11 may)

From march to may 2020, the Decision and Control Laboratory made
available a first dashboard based on a simple model.
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D&C Lab First Dashboard (7 march - 11 may)
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D&C Lab Current Dashboard (24 august - present)

Since august 2020 a new dashboard, including a running version of the
SIRCQTHE model for the Puglia region, is available at:

http://dclab.poliba.it/covid-19

The model is updated regularly, and it
employs the real data for the fi�ing
horizon (e.g, 3 weeks) to predict the
evolution in the forecasting horizon (e.g,
next 4 weeks) for the quarantined,
threatened, healed, and dead people.
The model is based on the Department of
Civil Protection data and on the Google
Mobility Reports.
The old predictions are also shown to
assess the model’s accuracy.
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D&C Lab Current Dashboard (24 august - present)

Interactive charts for the SIRCQTHE model
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D&C Lab Current Dashboard (25 august - present)

The dash lines represented expected Threatened cases with the
estimated mobility trends if no restriction were applied (DPCM
november 6)!
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D&C Lab Current Dashboard (25 august - present)

The dash lines represented expected Threatened cases with the
estimated mobility trends if no restriction were applied (DPCM
november 6)!
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D&C Lab Current Dashboard (24 august - present)

Other resources
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Model of Control Actions

We assume that the mitigation strategies are focused on reducing
the parameter β(k) (infection rate), such that on the long-term,
even in the absence of vaccinations, heard immunity can be
reached.
We assume that the infection rate is strongly influenced by people’s
mobility in di�erent socio-economic categories.
Our assumptions are confirmed by the works in
[Santamaria et al., 2020, Guan et al., 2020a, Iacus et al., 2020].
The mitigation strategy should ensure that the hospitalization
capacity is not violated and economic losses are minimized.

We define an optimal control problem, where the optimal control policy
u := (u(h)>, ...,u(h + K − 1)>)> is assigned over a control horizon
K(h) = {h, . . . , h + K − 1} of K time steps, where h is the current time
step.
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Model of Control Actions

At each time step, we collect the G control actions (mitigation strategies) in
vector u(k) = (u1(k), ...., uG(k))>. Hence, this vector collects the interventions
on mobility for all G socio-economic categories.
We recall that the open-loop relation between mobility in di�erent categories
m(k) and the infection rate is:

β(k) = β0 + β>m(k), ∀k ∈ K(h)

hence, the above relation is modified as follows:

β(k) = β0 + β>(1− u(k)), ∀k ∈ K(h).

where each control action ug(k) is selected in the interval [0-1].

We assume that an intervention on mobility in one category ug(k) cannot
be chosen independently from the others uf (k) ∀f 6= g. For instance, a
restrictive measure that aims at reducing mobility in the retail category
will also a�ect mobility in the transport category.

In order to avoid too frequent and impractical changes in the strategies,
the control actions are kept constant over a week (i.e., for seven
subsequent samples if the time period equals one day).
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The Optimal Control Problem

We employ the MPC approach to optimizes the impact of the restrictive measures on the
economic framework of the overall system.
To this aim, we minimize an objective function composed of three cost terms:

J (ū, u) = φ>
K u + α1 φ

>
K ∆u + α2 φ

>
K ∆ū.

The first term takes into account the economic impact of restrictive measures.

The second term is a regularization term that smooths the restrictive measures
over the control horizon (avoiding a bang-bang control), where
∆u := (0>

G , (u(h + 1)− u(h))>, ..., (u(h + K − 1)− u(h + K − 2))>)>.

The last term is a memory term to avoid the variation of decisions taken in a
previous time step, where
∆ū := (0>

G , (u(h)− ū(h))>, ..., (u(h + K − 2)− ū(h + K − 2))>)>.

α1 and α2 are weights selected by the decision maker in order to tune the
importance of the di�erent terms in the objective function.

vector φK collects the cost coe�icients and allows giving a di�erent importance to
di�erent categories.

Why do we consider regularization/memory terms? A continuous switch of decisions
would be unpractical in a real application –> we model a social system!
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The Optimal Control Problem

The optimal control problem is defined as follows:

minimize
u

J(ū,u)

subject to SIRCQTHE model , ∀k ∈ K(h)

Constraints on the decision variables vector u, ∀k ∈ K(h)

T− Tmax 1K ≤ 0K

where constrains on u impose that its valued are selected in a set of predefined
mobility levels and T− Tmax 1K ≤ 0K is a non-linear constraint that ensures
the containment of Threatened cases under a safety threshold Tmax. This
models a percentage of the regional healthcare system capacity (e.g., 30% of the
total hospital beds).
Solving the above optimization problem allows to select the best control actions
(i.e., mobility restrictions in the G mobility categories) that lead to reducing the
infection rate β(k), i.e., contain the pandemic, and at the same time minimize
the impact of the restrictive measures on economy, while respecting the given
threshold on the number of hospitalized people.
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Multi-Region Control Actions

We now consider the defined control approach in a multi-region framework. In
such a framework, we can additionally control the mobility between two
regions i and j by reducing the parameter ξi,j(k) that influence the dynamics of
the two state variables S(k) and C(k), i.e., Susceptible and Contagious
individuals.

We assume an on/o� control action ci(k) that implements the inter-region
travel restriction of the i-th region, included in Ci = {0, 1}, defined as:

ξi,j(k) = (1− ci(k))ξ0
i,j, ∀i, j ∈M, ∀k ∈ K(h)

where ξ0
i,j denotes the coe�icient of migration from region j into the considered

i-th region when no mobility restrictions are applied.

The objective function in thus redefined as the summation of the
single-region objective functions.

We remark that in the multi-region case the cost coe�icients φK,i become
region-dependent (i ∈M): policy makers can adjust these coe�icients in
accordance with their importance and priority (also in terms of regional
GDPs).
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Multi-Region Control Actions

In case of a multi-region scenario, a political question arises: how can we
select the control actions ci (inter-region travel restrictions) and ui

(intra-region mobility restrictions)?

1) Uniform intra-region activity and inter-region travel restrictions.
This policy was implemented by the Italian government during the
so-called COVID-19 Phase 1: the lockdown and the closure of regional
boundaries was simultaneously imposed to each Italian region.

2) Di�erentiated intra-region activity restrictions and uniform
inter-region travel restrictions.
This policy is currently implemented by the Italian government: all the
regional boundaries are closed, while each region determines
independently its restricting strategy locally.

3) Di�erentiated intra-region activity and inter-region travel restrictions.
This is the policy currently applied at the global level between di�erent
countries, e.g., between Italy and the United States.
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The Stochastic Optimal Control Problem

To take into account the variability and uncertainty in the characteristic
model parameters, we can modify the control approach employing
stochastic techniques.
Hence, we rewrite the MPC problem: instead of satisfying the safety threshold
exactly we ensure that the probability of keeping the number of Threatened
people below the safety threshold is above a certain level (e.g., 80%).

minimize
u

J(ū,u)

subject to SIRCQTHE model, ∀k ∈ K(h)

Constraints on the decision variables vector u, ∀k ∈ K(h)

P {T(ξ)− Tmax 1K ≤ 0K} ≥ 1− ε

P {T(ξ)− Tmax 1K ≤ 0K} is the probability of satisfying the
constraint .
ε ∈ [0, 1] is the risk level that the decision-maker is willing to
accept.
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The Model Predictive Control Formulation

According to the Model Predictive Control approach, the optimal control
problem is solved at each time step in an rolling horizon manner (the
problem is defined and solved iteratively, e.g, weekly).

More precisely, the computed control actions for the first time step are
then applied to the system to steer its behavior to the desired one, while
the horizon is shi�ed forward of one step. Hence, the next control action
is computed iteratively.

The resulting closed-loop feedback
control technique depends on
quantities that cannot be measured
(the four state variables S, I,R and C ).

Therefore, the previously described
identification procedure is performed
at each time step to estimate the
SIRCQTHE parameters.

multi-region
SIRCQTHE model

MPC
Optimization

solver

control actions

network of
Italian regions

Protezione Civile
epidemic data

Google mobility
reports
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Numerical experiments

The approach is tested on the Italian scenario over a simulation
period of 10 weeks using a prediction horizon of six weeks.
The cost coe�icients are based on the percentage of the Italian GDP
correlated with the di�erent G = 3 mobility categories and the
M = 20 di�erent regions.
The maximum number of Threatened people Tmax is defined for
each region based on the Italian Ministry of Health’s o�icial data.
We assume that the finite set of mobility restriction combinations U
corresponds to the di�erent strategies applied by the Italian
government to tackle the COVID-19 outbreak indicated with
di�erent colors.
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Numerical experiments

Set of the estimated control actions related to the scenario considered in the numerical
experiments.

White Green Yellow Orange Red
Name Retail Workplaces Transport Retail Workplaces Transport Retail Workplaces Transport Retail Workplaces Transport Retail Workplaces Transport
Piedmont 0.11 0.20 0.18 0.22 0.19 0.25 - - - - - - 0.55 0.34 0.54
Aosta - - - 0.40 0.22 0.40 - - - - - - 0.69 0.39 0.63
Lombardy 0.15 0.24 0.25 0.25 0.23 0.33 - - - - - - 0.57 0.36 0.59
Trentino - S. Tyrol 0.07 0.15 0.00 0.28 0.15 0.14 0.54 0.32 0.40 - - - - -
Veneto 0.06 0.17 0.13 0.17 0.14 0.21 0.30 0.22 0.42 - - - - -
Friuli-Ven. Giulia 0.07 0.17 0.05 0.17 0.15 0.10 0.29 0.21 0.27 0.49 0.26 0.36 - -
Liguria 0.06 0.13 0.07 0.22 0.18 0.22 0.31 0.24 0.32 0.41 0.29 0.37 - -
Emilia-Romagna 0.07 0.16 0.15 0.17 0.14 0.20 0.29 0.21 0.40 0.45 0.24 0.47 - -
Tuscany 0.07 0.15 0.10 0.21 0.16 0.22 0.32 0.23 0.35 0.43 0.28 0.43 0.54 0.31 0.52
Umbria 0.07 0.15 0.00 0.21 0.15 0.11 0.34 0.23 0.25 0.44 0.26 0.35 - -
Marche 0.03 0.12 0.01 0.18 0.13 0.12 0.28 0.20 0.27 0.43 0.23 0.38 - -
Lazio 0.15 0.25 0.31 0.24 0.24 0.36 0.32 0.29 0.47 - - - - -
Abruzzo 0.01 0.12 0.00 0.16 0.15 0.10 0.28 0.22 0.29 0.41 0.27 0.42 0.53 0.34 0.55
Molise - - - 0.15 0.11 0.06 0.31 0.24 0.34 - - - - -
Campania 0.07 0.22 0.14 0.26 0.26 0.31 0.37 0.33 0.45 - - - 0.55 0.40 0.59
Apulia 0.00 0.16 0.04 0.15 0.16 0.20 - - - 0.39 0.29 0.49 - -
Basilicata 0.00 0.13 - 0.13 0.12 0.29 0.29 0.22 0.47 0.41 0.29 0.56 - -
Calabria 0.00 0.12 0.00 0.17 0.16 0.10 - - - - - - 0.52 0.38 0.51
Sicily 0.04 0.16 0.05 0.19 0.17 0.19 - - - 0.43 0.30 0.49 - -
Sardinia 0.00 0.14 0.00 0.15 0.15 0.12 0.25 0.23 0.33 - - - - -
Mean 0.06 0.16 0.09 0.20 0.17 0.20 0.32 0.24 0.36 0.43 0.27 0.43 0.56 0.36 0.56

We estimate the value of the control action employing the Google
Mobility Reports (absent data correspond to the fact that the
corresponding region have never been to in the selected color category).
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Results and Discussion

Based on the estimated parameters for the SIRCQTHE model, the
control system selects the most suitable strategy to apply by solving
the optimal control problem.
We solve the stochastic optimal control problem assuming that the
level of risk that the decision-maker is willing to accept is ε = 0.2.
Having defined the control actions for the control horizon, a Monte
Carlo simulation with 1,000 iterations is performed by randomly
changing the model parameters at each time.
The results obtained for di�erent regularization coe�icients α1
and α2 show that, by employing higher values of α1 and α2, it is
possible to smooth the control action, while keeping the number of
hospitalized cases lower, albeit with an increased socio-economic
cost.
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Results and Discussion

Solution of an instance of the
stochastic optimal control problem
with no information of future
trends with prediction and control
horizon of six weeks starting from
(5 december).
The safety level Tmax is defined as
100% of the total beds.
To validate the approach a Monte
Carlo simulation with 1,000
iterations is performed by
randomly changing the model
parameters at each time.
Only the first step of the optimal
control result is applied!

Results of the Monte Carlo simulation in
terms of Threatened cases: expected
Threatened (blue line), confidence
interval for the Threatened cases (cyan
area), maximum number of Threatened
cases (black do�ed line), and the
evolution of the control action in the
control horizon (di�erent background
colors).
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Results and Discussion

Simulation start: 5 december.
Piedmont

Dec Jan
0

2000

4000

6000

8000

Aosta

Dec Jan
0

100

200

300

Lombardy

Dec Jan
0

1

2

10
4 Trentino-South Tyrol

Dec Jan
0

500

1000

1500

Veneto

Dec Jan
0

5000

10000

Friuli-Venezia Giulia

Dec Jan
0

1000

2000

Liguria

Dec Jan
0

1000

2000

3000

Emilia-Romagna

Dec Jan
0

2000

4000

6000

8000

Tuscany

Dec Jan
0

2000

4000

6000

8000

Umbria

Dec Jan
0

500

1000

Marche

Dec Jan
0

1000

2000

Lazio

Dec Jan
0

5000

10000

Abruzzo

Dec Jan
0

1000

2000

Molise

Dec Jan
0

100

200

300

Campania

Dec Jan
0

2000

4000

6000

8000

Apulia

Dec Jan
0

2000

4000

Basilicata

Dec Jan
0

200

400

600

Calabria

Dec Jan
0

500

1000

1500

Sicily

Dec Jan
0

2000

4000

6000

Sardinia

Dec Jan
0

1000

2000

Results of the Monte Carlo simulation in terms of Threatened cases over the 6 weeks
control/prediction horizon: expected Threatened (blue line), confidence interval for the
Threatened cases (cyan area), maximum number of Threatened cases (black do�ed line), and
the evolution of the control action in the control horizon (di�erent background colors).
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Results and Discussion

Solution of the MPC approach
over a simulation period of 10
weeks starting from (5
december).
We include noise and
disturbances to model
uncertainty.
The safety level Tmax is defined
as 50% of the total beds.
Each step of the simulation
period is the result of an
instance of the optimal control
result!
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Results obtained by the stochastic MPC when
α1 = α2 = 0.1 and α1 = α2 = 1:
Threatened cases (blue line), maximum
number of Threatened cases that can be
treated by each region (black line), and
evolution of the control action in the control
horizon (di�erent background colors).
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Results and Discussion

Simulation start: 5 december.
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Results obtained by the stochastic MPC for each region when α1 = α2 = 0.1: Threatened
cases (blue line), maximum number of Threatened cases that can be treated by each region
(black line), and evolution of the control action in the control horizon (di�erent background
colors).
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Results and Discussion

Simulation start: 5 december.
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Results obtained by the stochastic MPC for each region when α1 = α2 = 1: Threatened
cases (blue line), maximum number of Threatened cases that can be treated by each region
(black line), and evolution of the control action in the control horizon (di�erent background
colors).
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Conclusions

Over the last months, the COVID-19 pandemic has a�ected the whole world. Since
vaccinations require a long time to obtain herd immunity, the main mitigation
actions of the pandemic rely on the use of non-pharmaceutical interventions.

Such control measures have proven to be e�ective, albeit at the cost of a
significant socio-economic impact on the population.

It is therefore essential to develop methods to support policy-makers in taking
decision to mitigate the e�ects of COVID-19 pandemic.

To this aim, our works present a feedback control approach which makes joint use
of a novel compartmental epidemiological model and a novel Model Predictive
Control technique.

We employ a multi-region framework, to properly represent the regional
di�erences in healthcare systems.

The proposed approach is tested on real data of the Italian case study showing its
e�ectiveness in controlling the pandemic, i.e., keeping the number of Threatened
cases below a fixed maximum limit, while simultaneously minimizing the
socio-economic impact of the required restriction periods.

As a further development of the approach, age-di�erentiated control actions can
also be addressed, and, with the ongoing vaccination for the COVID-19 disease,
we also plan to investigate the most e�ective way for distribution of the vaccine.
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