Vai al contenuto

Informazioni

+39 080 596 3843
ti.ab1765433850ilop.1765433850dhp@21765433850eliro1765433850ngis.1765433850f1765433850
Curriculum Vitae (english)
Pubblicazioni

Federico SIGNORILE

Dottorando

Federico Signorile ha conseguito la laurea triennale (2022) e magistrale (2024) in Ingegneria Gestionale presso il Politecnico di Bari, entrambe con votazione di 110/110 e lode. Ha svolto un’esperienza internazionale come visiting student alla Dalarna University, in Svezia, per un periodo di 3 mesi.
Attualmente è dottorando in Automatica presso il Politecnico di Bari, nell’ambito di un dottorato industriale co-finanziato da E80 Group S.p.A. Il suo progetto di ricerca, intitolato “Algoritmi per la gestione e il controllo di flotte di agenti mobili”, si concentra sullo sviluppo di soluzioni per la pianificazione e il controllo di veicoli autonomi in applicazioni logistiche.
I suoi interessi di ricerca includono i sistemi intelligenti multi-agente, con un focus su pianificazione, controllo e ottimizzazione di veicoli a guida autonoma, utilizzando tecniche di ottimizzazione e ricerca operativa.


Pubblicazioni

2025

  • Signorile, F., Mastromarino, F., Scarabaggio, P., Gialò, V., Carli, R. & Dotoli, M. (2025) Optimal Positioning of Electric Vehicle Chargers for Efficient Land Use in Smart Cities: Integration with Fuel Stations IN Volta, M. (Ed.), IFAC-PapersOnLine.Elsevier B.V., 315-320. doi:10.1016/j.ifacol.2025.08.156
    [BibTeX] [Abstract] [Download PDF]
    Expanding the charging infrastructure is essential for the widespread adoption of electric vehicles (EVs). A promising and effective solution is integrating EV charging points into existing fuel stations, thus optimizing land use while enhancing accessibility. Hence, the optimal placement of EV chargers within fuel station networks is a critical challenge. Traditional approaches rely on the so-called Maximal Covering Location Problem (MCLP), which assumes binary coverage and overlooks capacity constraints. This paper extends the MCLP framework by introducing a novel distance-based scalable coverage function and incorporating capacity limitations to prevent stations overload. The proposed model enhances the accuracy of demand distribution and offers a realistic, scalable approach to planning EV charging infrastructure. To validate its effectiveness, the proposed model is tested on a real-world case study involving the city of Bari, Italy. © 2025 Elsevier B.V., All rights reserved.
    @CONFERENCE{Signorile2025315,
    author = {Signorile, Federico and Mastromarino, Fabio and Scarabaggio, Paolo and Gialò, Valeria and Carli, Raffaele and Dotoli, Mariagrazia},
    title = {Optimal Positioning of Electric Vehicle Chargers for Efficient Land Use in Smart Cities: Integration with Fuel Stations},
    year = {2025},
    journal = {IFAC-PapersOnLine},
    volume = {59},
    number = {9},
    pages = {315 - 320},
    doi = {10.1016/j.ifacol.2025.08.156},
    url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105016601583&doi=10.1016%2Fj.ifacol.2025.08.156&partnerID=40&md5=1355076b28a3acbd873b765c23e1594f},
    affiliations = {Politecnico di Bari, Department of Electronic and Information Engineering, Bari, Italy},
    abstract = {Expanding the charging infrastructure is essential for the widespread adoption of electric vehicles (EVs). A promising and effective solution is integrating EV charging points into existing fuel stations, thus optimizing land use while enhancing accessibility. Hence, the optimal placement of EV chargers within fuel station networks is a critical challenge. Traditional approaches rely on the so-called Maximal Covering Location Problem (MCLP), which assumes binary coverage and overlooks capacity constraints. This paper extends the MCLP framework by introducing a novel distance-based scalable coverage function and incorporating capacity limitations to prevent stations overload. The proposed model enhances the accuracy of demand distribution and offers a realistic, scalable approach to planning EV charging infrastructure. To validate its effectiveness, the proposed model is tested on a real-world case study involving the city of Bari, Italy. © 2025 Elsevier B.V., All rights reserved.},
    author_keywords = {Charging stations; Electric vehicles; Land use; Maximal covering location problem; Optimal positioning; Smart cities},
    keywords = {Charging (batteries); Charging stations; Electric vehicles; Optimization; Smart city; Sustainable development; Charging infrastructures; Charging station; Covering location problems; Effective solution; Electric vehicle charging; Electric vehicles chargers; Fuel station; Maximal covering location problem; Optimal placements; Optimal positioning; Land use},
    correspondence_address = {F. Signorile; Department of Electrical and Information Engineering, Polytechnic of Bari, Bari, 70125, Italy; email: ti.ab1765433850ilop.1765433850dhp@21765433850eliro1765433850ngis.1765433850f1765433850; F. Mastromarino; Department of Electrical and Information Engineering, Polytechnic of Bari, Bari, 70125, Italy; email: ti.ab1765433850ilop@1765433850onira1765433850morts1765433850am.oi1765433850baf1765433850; P. Scarabaggio; Department of Electrical and Information Engineering, Polytechnic of Bari, Bari, 70125, Italy; email: ti.ab1765433850ilop@1765433850oigga1765433850barac1765433850s.olo1765433850ap1765433850; V. Gialò; Department of Electrical and Information Engineering, Polytechnic of Bari, Bari, 70125, Italy; email: ti.ab1765433850ilop.1765433850itned1765433850uts@o1765433850laig.1765433850v1765433850; R. Carli; Department of Electrical and Information Engineering, Polytechnic of Bari, Bari, 70125, Italy; email: ti.ab1765433850ilop@1765433850ilrac1765433850.elea1765433850ffar1765433850; M. Dotoli; Department of Electrical and Information Engineering, Polytechnic of Bari, Bari, 70125, Italy; email: ti.ab1765433850ilop@1765433850iloto1765433850d.aiz1765433850argai1765433850ram1765433850},
    editor = {Volta, M.},
    publisher = {Elsevier B.V.},
    issn = {24058963; 24058971; 14746670},
    isbn = {9783902661869; 9788374810357; 8374810351; 9783902661463; 9783902661586; 9783902661906; 9783902661104; 9783902823007; 9783902823243; 9783902823106},
    language = {English},
    abbrev_source_title = {IFAC-PapersOnLine},
    type = {Conference paper},
    publication_stage = {Final},
    source = {Scopus},
    note = {Cited by: 0; All Open Access; Gold Open Access}
    }

Close Bitnami banner
Bitnami