
Information
“L. Salvatore” building – 3° floor – room 308
+39 080 596 3065
ti.ab1745639505ilop@1745639505oigga1745639505barac1745639505s.olo1745639505ap1745639505
Institutional page
Scopus Researcher Page
Curriculum Vitae (english)
Pubblicazioni
Courses
Analisi e Simulazione dei Sistemi
Fondamenti di Automatica
Game Theory for Controlling Autonomous Systems
Paolo SCARABAGGIO
Assistant Professor
Paolo Scarabaggio received a Ph.D. in Electrical and Information Engineering from Politecnico di Bari, Italy.
He is currently an assistant professor (RTDA) at the Decision and Control Laboratory of Politecnico di Bari. In 2019, he visited the Delft Center for Systems and Control, Technical University of Delft, The Netherlands.
His research interests include modeling, optimization, game theory, and control of complex multi-agent systems, with application in energy distribution systems, and social networks. He is author of 20+ printed international publications. He is the recipient of the 2022 IEEE CSS Italy Best Young Author Journal Paper Award.
Pubblicazioni
2025
- Tresca, G., Cavone, G., Scarabaggio, P., Carli, R. & Dotoli, M. (2025) A Matheuristics for the Configuration of Automated Vertical Lift Modules Warehouses. IN IEEE Transactions on Automation Science and Engineering, 22.7284 – 7295. doi:10.1109/TASE.2024.3490986
[BibTeX] [Abstract] [Download PDF]The design of the layout of Vertical Lift Module (VLM) warehouses is a non-trivial process that involves selecting dimensions, internal configuration, and allocation of each tray to avoid space loss while satisfying logistic constraints. Our contribution in this context is a two-phase matheuristics –an algorithm that combines exact mathematical methods and heuristics– to simplify the design of VLMs layout. The proposed matheuristics relies on three Mixed-Integer Linear Programming models, addressing the internal configuration of trays and the allocation of trays into columns based on industrial logistic constraints. This approach requires as input parameters the items features, predetermined tray types with different dimensions, matheuristic settings, and a priority rule for tray allocation. The algorithm outputs to the logistics operator types and quantities of trays needed, internal partitioning, item positions in each tray, and tray positions in each column. Extensive testing demonstrates the effectiveness of our approach under realistic scenarios. Additionally, we introduce a comprehensive set of priority rules for allocating trays into columns, providing a comparison to assist logistics operators in selecting the most suitable for specific scenarios. Note to Practitioners—VLMs are closed structures composed of columns that house a variable number of sliding trays and a lift-mounted module that handles the trays. Their operation revolves around the so-called “goods to the man” principle, where goods are automatically brought to the operator using a dedicated access bay. This design ensures that stored items are easily accessible to operators, reducing time for order picking and improving workplace safety and ergonomics. Designing a VLM for logistics companies is a complex and time-consuming task since it requires optimizing a target objective while satisfying a large set of constraints. The current manual approach lacks automated methods and relies on experienced operators and iterative improvement processes. Our two-phase matheuristic algorithm automates VLMs layout configuration, addressing tasks from item placement to tray allocation within columns. The algorithm is versatile, considering various practical and logistic constraints, making it applicable in warehouse design decision support systems or engineering software. © 2004-2012 IEEE.
@ARTICLE{Tresca20257284, author = {Tresca, Giulia and Cavone, Graziana and Scarabaggio, Paolo and Carli, Raffaele and Dotoli, Mariagrazia}, title = {A Matheuristics for the Configuration of Automated Vertical Lift Modules Warehouses}, year = {2025}, journal = {IEEE Transactions on Automation Science and Engineering}, volume = {22}, pages = {7284 – 7295}, doi = {10.1109/TASE.2024.3490986}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105001070593&doi=10.1109%2fTASE.2024.3490986&partnerID=40&md5=c18aa99905cddf01657611701e417698}, abstract = {The design of the layout of Vertical Lift Module (VLM) warehouses is a non-trivial process that involves selecting dimensions, internal configuration, and allocation of each tray to avoid space loss while satisfying logistic constraints. Our contribution in this context is a two-phase matheuristics –an algorithm that combines exact mathematical methods and heuristics– to simplify the design of VLMs layout. The proposed matheuristics relies on three Mixed-Integer Linear Programming models, addressing the internal configuration of trays and the allocation of trays into columns based on industrial logistic constraints. This approach requires as input parameters the items features, predetermined tray types with different dimensions, matheuristic settings, and a priority rule for tray allocation. The algorithm outputs to the logistics operator types and quantities of trays needed, internal partitioning, item positions in each tray, and tray positions in each column. Extensive testing demonstrates the effectiveness of our approach under realistic scenarios. Additionally, we introduce a comprehensive set of priority rules for allocating trays into columns, providing a comparison to assist logistics operators in selecting the most suitable for specific scenarios. Note to Practitioners—VLMs are closed structures composed of columns that house a variable number of sliding trays and a lift-mounted module that handles the trays. Their operation revolves around the so-called “goods to the man” principle, where goods are automatically brought to the operator using a dedicated access bay. This design ensures that stored items are easily accessible to operators, reducing time for order picking and improving workplace safety and ergonomics. Designing a VLM for logistics companies is a complex and time-consuming task since it requires optimizing a target objective while satisfying a large set of constraints. The current manual approach lacks automated methods and relies on experienced operators and iterative improvement processes. Our two-phase matheuristic algorithm automates VLMs layout configuration, addressing tasks from item placement to tray allocation within columns. The algorithm is versatile, considering various practical and logistic constraints, making it applicable in warehouse design decision support systems or engineering software. © 2004-2012 IEEE.}, author_keywords = {Automated warehouse; logistics 4.0; matheuristics; vertical lift modules}, type = {Article}, publication_stage = {Final}, source = {Scopus}, note = {Cited by: 2; All Open Access, Hybrid Gold Open Access} }
- Proia, S., Cavone, G., Scarabaggio, P., Carli, R. & Dotoli, M. (2025) Safety Compliant, Ergonomic and Time-Optimal Trajectory Planning for Collaborative Robotics. IN IEEE Transactions on Automation Science and Engineering, 22.594 – 605. doi:10.1109/TASE.2023.3331505
[BibTeX] [Abstract] [Download PDF]The demand for safe and ergonomic workplaces is rapidly growing in modern industrial scenarios, especially for companies that intensely rely on Human-Robot Collaboration (HRC). This work focuses on optimizing the trajectory of the end-effector of a cobot arm in a collaborative industrial environment, ensuring the maximization of the operator’s safety and ergonomics without sacrificing production efficiency requirements. Hence, a multi-objective optimization strategy for trajectory planning in a safe and ergonomic HRC is defined. This approach aims at finding the best trade-off between the total traversal time of the cobot’s end-effector trajectory and ergonomics for the human worker, while respecting in the kinematic constraint of the optimization problem the ISO safety requirements through the well-known Speed and Separation Monitoring (SSM) methodology. Guaranteeing an ergonomic HRC means reducing musculoskeletal disorders linked to risky and highly repetitive activities. The three main phases of the proposed technique are described as follows. First, a manikin designed using a dedicated software is employed to evaluate the Rapid Upper Limb Assessment (RULA) ergonomic index in the working area. Next, a second-order cone programming problem is defined to represent a time-optimal safety compliant trajectory planning problem. Finally, the trajectory that ensures the best compromise between these two opposing goals-minimizing the task’s traversal time and maintaining a high level of ergonomics for the human worker- is computed by defining and solving a multi-objective control problem. The method is tested on an experimental case study in reference to an assembly task and the obtained results are discussed, showing the effectiveness of the proposed approach. Note to Practitioners – Health and safety in workplaces are business imperatives, since they ensure not only a safe collaboration between industrial machinery and human operators, but also an increased productivity and flexibility of the entire industrial process. Hence, investing in health is a real driver for business growth. The key enabling technologies of Industry 4.0, such as collaborative robotics, exoskeletons, virtual and augmented reality, require standardization and indispensable technical safety requirements that cannot ignore physical, sensory, and psychological peculiarities of the human worker and aspects like usability and acceptability of these technologies in performing their activities. Against this ongoing industrial challenge, the aim of this paper is to provide researchers and practitioners with an innovative HRC trajectory planning methodology focused on enhancing production efficiency while respecting the SSM ISO safety requirement and guaranteeing the ergonomic optimal position of the operator during an assembly task. Therefore, the proposed methodology can be a convenient solution to be deployed in industrial companies, since it can support human operators by drastically reducing work-related musculoskeletal disorders and augmenting their performance in the working environment. © 2023 The Authors.
@ARTICLE{Proia2025594, author = {Proia, Silvia and Cavone, Graziana and Scarabaggio, Paolo and Carli, Raffaele and Dotoli, Mariagrazia}, title = {Safety Compliant, Ergonomic and Time-Optimal Trajectory Planning for Collaborative Robotics}, year = {2025}, journal = {IEEE Transactions on Automation Science and Engineering}, volume = {22}, pages = {594 – 605}, doi = {10.1109/TASE.2023.3331505}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85178048425&doi=10.1109%2fTASE.2023.3331505&partnerID=40&md5=7fe6504b770617ce6996f3bf55c5d7c1}, abstract = {The demand for safe and ergonomic workplaces is rapidly growing in modern industrial scenarios, especially for companies that intensely rely on Human-Robot Collaboration (HRC). This work focuses on optimizing the trajectory of the end-effector of a cobot arm in a collaborative industrial environment, ensuring the maximization of the operator's safety and ergonomics without sacrificing production efficiency requirements. Hence, a multi-objective optimization strategy for trajectory planning in a safe and ergonomic HRC is defined. This approach aims at finding the best trade-off between the total traversal time of the cobot's end-effector trajectory and ergonomics for the human worker, while respecting in the kinematic constraint of the optimization problem the ISO safety requirements through the well-known Speed and Separation Monitoring (SSM) methodology. Guaranteeing an ergonomic HRC means reducing musculoskeletal disorders linked to risky and highly repetitive activities. The three main phases of the proposed technique are described as follows. First, a manikin designed using a dedicated software is employed to evaluate the Rapid Upper Limb Assessment (RULA) ergonomic index in the working area. Next, a second-order cone programming problem is defined to represent a time-optimal safety compliant trajectory planning problem. Finally, the trajectory that ensures the best compromise between these two opposing goals-minimizing the task's traversal time and maintaining a high level of ergonomics for the human worker- is computed by defining and solving a multi-objective control problem. The method is tested on an experimental case study in reference to an assembly task and the obtained results are discussed, showing the effectiveness of the proposed approach. Note to Practitioners - Health and safety in workplaces are business imperatives, since they ensure not only a safe collaboration between industrial machinery and human operators, but also an increased productivity and flexibility of the entire industrial process. Hence, investing in health is a real driver for business growth. The key enabling technologies of Industry 4.0, such as collaborative robotics, exoskeletons, virtual and augmented reality, require standardization and indispensable technical safety requirements that cannot ignore physical, sensory, and psychological peculiarities of the human worker and aspects like usability and acceptability of these technologies in performing their activities. Against this ongoing industrial challenge, the aim of this paper is to provide researchers and practitioners with an innovative HRC trajectory planning methodology focused on enhancing production efficiency while respecting the SSM ISO safety requirement and guaranteeing the ergonomic optimal position of the operator during an assembly task. Therefore, the proposed methodology can be a convenient solution to be deployed in industrial companies, since it can support human operators by drastically reducing work-related musculoskeletal disorders and augmenting their performance in the working environment. © 2023 The Authors.}, author_keywords = {cobots; Collaborative robotics; ergonomics; human-robot collaboration (HRC); rapid upper limb assessment (RULA); safety; speed and separation monitoring; time-optimal trajectory planning}, type = {Article}, publication_stage = {Final}, source = {Scopus}, note = {Cited by: 3; All Open Access, Hybrid Gold Open Access} }
- Scarabaggio, P., Carli, R., Grammatico, S. & Dotoli, M. (2025) Local Generalized Nash Equilibria With Nonconvex Coupling Constraints. IN IEEE Transactions on Automatic Control, 70.1427 – 1439. doi:10.1109/TAC.2024.3462553
[BibTeX] [Abstract] [Download PDF]In this article, we address a class of Nash games with nonconvex coupling constraints for which we define a novel notion of local equilibrium, here named local generalized Nash equilibrium (LGNE). Our first technical contribution is to show the stability in the game theoretic sense of these equilibria on a specific local subset of the original feasible set. Remarkably, we show that the proposed notion of local equilibrium can be equivalently formulated as the solution of a quasi-variational inequality with equal Lagrange multipliers. Next, under the additional proximal smoothness assumption of the coupled feasible set, we define conditions for the existence and local uniqueness of an LGNE. To compute such an equilibrium, we propose two discrete-time dynamics, or fixed-point iterations implemented in a centralized fashion. Our third technical contribution is to prove convergence under (strongly) monotone assumptions on the pseudogradient mapping of the game and proximal smoothness of the coupled feasible set. Finally, we apply our theoretical results to a noncooperative version of the optimal power flow control problem. © 2024 IEEE.
@ARTICLE{Scarabaggio20251427, author = {Scarabaggio, Paolo and Carli, Raffaele and Grammatico, Sergio and Dotoli, Mariagrazia}, title = {Local Generalized Nash Equilibria With Nonconvex Coupling Constraints}, year = {2025}, journal = {IEEE Transactions on Automatic Control}, volume = {70}, number = {3}, pages = {1427 – 1439}, doi = {10.1109/TAC.2024.3462553}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-86000431043&doi=10.1109%2fTAC.2024.3462553&partnerID=40&md5=375ba41f7040e37903e8cbb038fe21a6}, abstract = {In this article, we address a class of Nash games with nonconvex coupling constraints for which we define a novel notion of local equilibrium, here named local generalized Nash equilibrium (LGNE). Our first technical contribution is to show the stability in the game theoretic sense of these equilibria on a specific local subset of the original feasible set. Remarkably, we show that the proposed notion of local equilibrium can be equivalently formulated as the solution of a quasi-variational inequality with equal Lagrange multipliers. Next, under the additional proximal smoothness assumption of the coupled feasible set, we define conditions for the existence and local uniqueness of an LGNE. To compute such an equilibrium, we propose two discrete-time dynamics, or fixed-point iterations implemented in a centralized fashion. Our third technical contribution is to prove convergence under (strongly) monotone assumptions on the pseudogradient mapping of the game and proximal smoothness of the coupled feasible set. Finally, we apply our theoretical results to a noncooperative version of the optimal power flow control problem. © 2024 IEEE.}, author_keywords = {Generalized Nash equilibrium (GNE); multiagent systems; nonconvex generalized games; variational inequalities (VIs)}, type = {Article}, publication_stage = {Final}, source = {Scopus}, note = {Cited by: 0; All Open Access, Hybrid Gold Open Access} }
- Mignoni, N., Scarabaggio, P., Carli, R. & Dotoli, M. (2025) A Framework for the Automated and Optimal Design of Vertical Lift Modules. IN IEEE Transactions on Systems, Man, and Cybernetics: Systems, .. doi:10.1109/TSMC.2025.3547302
[BibTeX] [Abstract] [Download PDF]To this day, tasks like planning and managing warehouses remain complex. Automated storage and retrieval systems have enhanced warehousing efficiency, yet designing them optimally is still challenging, despite their importance for the efficient operation of the warehouse. This article aims to present a novel framework for automating the optimal design of vertical lift modules (VLMs), focusing on tray types, quantities, and item-tray sector assignments, based on a specified inventory list. The approach accounts for VLM’s physical, manufacturing, and ergonomic constraints to ensure a manufacturable system design. To manage computational complexity, the size of the mixed-integer problem is reduced through an exact clustering of items, sectors, and layouts. The proposed framework is tested through numerical simulations using real data from an Italian VLM manufacturer. © 2013 IEEE.
@ARTICLE{Mignoni2025, author = {Mignoni, Nicola and Scarabaggio, Paolo and Carli, Raffaele and Dotoli, Mariagrazia}, title = {A Framework for the Automated and Optimal Design of Vertical Lift Modules}, year = {2025}, journal = {IEEE Transactions on Systems, Man, and Cybernetics: Systems}, doi = {10.1109/TSMC.2025.3547302}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-105000390110&doi=10.1109%2fTSMC.2025.3547302&partnerID=40&md5=8e3e2b43920755886d79bd2e6a3e8eb7}, abstract = {To this day, tasks like planning and managing warehouses remain complex. Automated storage and retrieval systems have enhanced warehousing efficiency, yet designing them optimally is still challenging, despite their importance for the efficient operation of the warehouse. This article aims to present a novel framework for automating the optimal design of vertical lift modules (VLMs), focusing on tray types, quantities, and item-tray sector assignments, based on a specified inventory list. The approach accounts for VLM's physical, manufacturing, and ergonomic constraints to ensure a manufacturable system design. To manage computational complexity, the size of the mixed-integer problem is reduced through an exact clustering of items, sectors, and layouts. The proposed framework is tested through numerical simulations using real data from an Italian VLM manufacturer. © 2013 IEEE.}, author_keywords = {Automatic storage and retrieval systems; combinatorial assignment; logistics; mixed-integer optimization; vertical lift modules (VLMs)}, type = {Article}, publication_stage = {Article in press}, source = {Scopus}, note = {Cited by: 0} }
- Proia, S., Cavone, G., Scarabaggio, P., Carli, R. & Dotoli, M. (2025) An Integrated Control Framework for Safe and Ergonomic Human-Drone Interaction in Industrial Warehouses. IN IEEE Transactions on Systems, Man, and Cybernetics: Systems, .. doi:10.1109/TSMC.2025.3540635
[BibTeX] [Abstract] [Download PDF]This study introduces a novel control framework for human-drone interaction (HDI) in industrial warehouses, targeting pick-and-delivery operations. The goals are to enhance operator safety as well as well-being and, at the same time, to improve efficiency and reduce production costs. To these aims, the speed and separation monitoring (SSM) operation method is employed for the first time in HDI, drawing an analogy to the safety requirements outlined in collaborative robots’ ISO standards. The so-called protective separation distance is used to ensure the safety of operators engaged in collaborative tasks with drones. In addition, we employ the rapid upper limb assessment (RULA) method to evaluate the ergonomic posture of operators during interactions with drones. To validate the proposed approach in a realistic industrial setting, a quadrotor is deployed for pick-and-delivery tasks along a predefined trajectory from the picking bay to the palletizing area, where the interaction between the drone and a moving operator takes place. The drone navigates toward the interaction space while avoiding collisions with shelves and other drones in motion. The control strategy for the drone cruise navigation integrates simultaneously the time-variant artificial potential field (APF) technique for trajectory planning and the iterative linear quadratic regulator (LQR) controller for trajectory tracking. Differently, in the descent phase, the receding horizon LQR algorithm is employed to follow a trajectory planned in accordance with the SSM, which starts from the approach point at the border of the interaction space and ends in the volume with the operator’s minimum RULA. The presented control strategy facilitates drone management by adapting the drone’s position to changes in the operator’s position while satisfying HDI safety requirements. The results of the proposed HDI framework simulations for the case study demonstrate the effectiveness of the method in ensuring a safe and ergonomic HDI within industrial warehouses. © 2025 IEEE.
@ARTICLE{Proia2025, author = {Proia, Silvia and Cavone, Graziana and Scarabaggio, Paolo and Carli, Raffaele and Dotoli, Mariagrazia}, title = {An Integrated Control Framework for Safe and Ergonomic Human-Drone Interaction in Industrial Warehouses}, year = {2025}, journal = {IEEE Transactions on Systems, Man, and Cybernetics: Systems}, doi = {10.1109/TSMC.2025.3540635}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85219129176&doi=10.1109%2fTSMC.2025.3540635&partnerID=40&md5=84b5cc6388d9345773c5977c534e7fa0}, abstract = {This study introduces a novel control framework for human-drone interaction (HDI) in industrial warehouses, targeting pick-and-delivery operations. The goals are to enhance operator safety as well as well-being and, at the same time, to improve efficiency and reduce production costs. To these aims, the speed and separation monitoring (SSM) operation method is employed for the first time in HDI, drawing an analogy to the safety requirements outlined in collaborative robots' ISO standards. The so-called protective separation distance is used to ensure the safety of operators engaged in collaborative tasks with drones. In addition, we employ the rapid upper limb assessment (RULA) method to evaluate the ergonomic posture of operators during interactions with drones. To validate the proposed approach in a realistic industrial setting, a quadrotor is deployed for pick-and-delivery tasks along a predefined trajectory from the picking bay to the palletizing area, where the interaction between the drone and a moving operator takes place. The drone navigates toward the interaction space while avoiding collisions with shelves and other drones in motion. The control strategy for the drone cruise navigation integrates simultaneously the time-variant artificial potential field (APF) technique for trajectory planning and the iterative linear quadratic regulator (LQR) controller for trajectory tracking. Differently, in the descent phase, the receding horizon LQR algorithm is employed to follow a trajectory planned in accordance with the SSM, which starts from the approach point at the border of the interaction space and ends in the volume with the operator's minimum RULA. The presented control strategy facilitates drone management by adapting the drone's position to changes in the operator's position while satisfying HDI safety requirements. The results of the proposed HDI framework simulations for the case study demonstrate the effectiveness of the method in ensuring a safe and ergonomic HDI within industrial warehouses. © 2025 IEEE.}, author_keywords = {Aerial robotics; and separation monitoring (SSM); ergonomics; human-drone Interaction (HDI); quadrotor; rapid upper limb assessment (RULA); safety; speed; trajectory planning; trajectory tracking}, type = {Article}, publication_stage = {Article in press}, source = {Scopus}, note = {Cited by: 0} }
2024
- Mignoni, N., Scarabaggio, P., Carli, R. & Dotoli, M. (2024) A Markowitz Optimization Approach for Automating the Italian Research Quality Monitoring and Evaluation IN IEEE International Conference on Automation Science and Engineering., 1741 – 1746. doi:10.1109/CASE59546.2024.10711557
[BibTeX] [Abstract] [Download PDF]This paper presents a selection-supporting framework which can help research institutions to optimally and automatically pool the research products for research quality assessment programs, with a specific focus on the Italian evaluation process (VQR). After providing a mathematical description of the VQR exercise at the institutional level, we formulate the robust optimization problem which yields the optimal pair of research products and associated authors. We show how such a formulation quickly becomes unpractical, due to combinatorial issues, and propose a novel Markowitz-based alternative approach, which preserves computational feasibility and effectiveness. We strive to propose a reusable framework, not too tightly connected to the ruleset of the current VQR session (2020-2024). Finally, we validate the proposed framework on a synthetic set of parameters, which mimics a medium-sized research institution, with the aim of checking the computational feasibility of the proposed Markowitz-based variants. © 2024 IEEE.
@CONFERENCE{Mignoni20241741, author = {Mignoni, Nicola and Scarabaggio, Paolo and Carli, Raffaele and Dotoli, Mariagrazia}, title = {A Markowitz Optimization Approach for Automating the Italian Research Quality Monitoring and Evaluation}, year = {2024}, journal = {IEEE International Conference on Automation Science and Engineering}, pages = {1741 – 1746}, doi = {10.1109/CASE59546.2024.10711557}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85208240014&doi=10.1109%2fCASE59546.2024.10711557&partnerID=40&md5=f248874234f038dc9b0af1c54eed84c1}, abstract = {This paper presents a selection-supporting framework which can help research institutions to optimally and automatically pool the research products for research quality assessment programs, with a specific focus on the Italian evaluation process (VQR). After providing a mathematical description of the VQR exercise at the institutional level, we formulate the robust optimization problem which yields the optimal pair of research products and associated authors. We show how such a formulation quickly becomes unpractical, due to combinatorial issues, and propose a novel Markowitz-based alternative approach, which preserves computational feasibility and effectiveness. We strive to propose a reusable framework, not too tightly connected to the ruleset of the current VQR session (2020-2024). Finally, we validate the proposed framework on a synthetic set of parameters, which mimics a medium-sized research institution, with the aim of checking the computational feasibility of the proposed Markowitz-based variants. © 2024 IEEE.}, type = {Conference paper}, publication_stage = {Final}, source = {Scopus}, note = {Cited by: 0} }
- Noghani, S. A., Scarabaggio, P., Carli, R. & Dotoli, M. (2024) Solar-Powered Electric Vehicles into V2G-Capable Smart Parking Infrastructure for Enhanced Energy Efficiency IN 10th 2024 International Conference on Control, Decision and Information Technologies, CoDIT 2024., 575 – 580. doi:10.1109/CoDIT62066.2024.10708524
[BibTeX] [Abstract] [Download PDF]This paper introduces a novel framework for integrating solar-powered electric vehicles (SPEVs) into smart parking infrastructures, primarily focusing on optimizing energy utilization. The proposed framework relies on Model Predictive Control (MPC) to ensure efficient power flow management within smart parking infrastructures. Notably, the paper emphasizes the constraints necessary to ensure the safety and optimal performance of SPEVs and their charging requirements. Results show the effectiveness of the proposed approach, not only in preventing energy management issues but also in substantially reducing reliance on energy procurement from the grid. This integrated system contributes to a more sustainable and cost-effective energy ecosystem, representing a noteworthy advancement in electric mobility infrastructure. © 2024 IEEE.
@CONFERENCE{Noghani2024575, author = {Noghani, Saba Askari and Scarabaggio, Paolo and Carli, Raffaele and Dotoli, Mariagrazia}, title = {Solar-Powered Electric Vehicles into V2G-Capable Smart Parking Infrastructure for Enhanced Energy Efficiency}, year = {2024}, journal = {10th 2024 International Conference on Control, Decision and Information Technologies, CoDIT 2024}, pages = {575 – 580}, doi = {10.1109/CoDIT62066.2024.10708524}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85208219403&doi=10.1109%2fCoDIT62066.2024.10708524&partnerID=40&md5=bf6191f3ce28a0a3f86fb1105d8412c1}, abstract = {This paper introduces a novel framework for integrating solar-powered electric vehicles (SPEVs) into smart parking infrastructures, primarily focusing on optimizing energy utilization. The proposed framework relies on Model Predictive Control (MPC) to ensure efficient power flow management within smart parking infrastructures. Notably, the paper emphasizes the constraints necessary to ensure the safety and optimal performance of SPEVs and their charging requirements. Results show the effectiveness of the proposed approach, not only in preventing energy management issues but also in substantially reducing reliance on energy procurement from the grid. This integrated system contributes to a more sustainable and cost-effective energy ecosystem, representing a noteworthy advancement in electric mobility infrastructure. © 2024 IEEE.}, author_keywords = {energy management; model predictive control; renewable energy; solar-powered vehicles}, type = {Conference paper}, publication_stage = {Final}, source = {Scopus}, note = {Cited by: 1} }
- Scarabaggio, P., Mignoni, N., Carli, R. & Dotoli, M. (2024) Equilibrium Seeking in Learning-Based Noncooperative Nash Games IN Proceedings of the IEEE Conference on Decision and Control., 210 – 215. doi:10.1109/CDC56724.2024.10886614
[BibTeX] [Abstract] [Download PDF]Traditionally, based on convexity, multi-agent decision-making models can hardly handle scenarios where agents’ cost functions defy this assumption, which is specifically required to ensure the existence of several equilibrium concepts. More recently, the advent of machine learning (ML), with its inherent non-convexity, has changed the conventional approach of pursuing convexity at all costs. This paper explores and integrates the robustness of game theoretic frameworks in managing conflicts among agents with the capacity of ML approaches, such as deep neural networks (DNNs), to capture complex agent behaviors. Specifically, we employ feed-forward DNNs to characterize agents’ best response actions rather than modeling their goals with convex functions. We introduce a technical assumption on the weight of the DNN to establish the existence and uniqueness of Nash equilibria and present two distributed algorithms based on fixed-point iterations for their computation. Finally, we demonstrate the practical application of our framework to a noncooperative community of smart energy users under a dynamic time-of-use energy pricing scheme. © 2024 IEEE.
@CONFERENCE{Scarabaggio2024210, author = {Scarabaggio, Paolo and Mignoni, Nicola and Carli, Raffaele and Dotoli, Mariagrazia}, title = {Equilibrium Seeking in Learning-Based Noncooperative Nash Games}, year = {2024}, journal = {Proceedings of the IEEE Conference on Decision and Control}, pages = {210 – 215}, doi = {10.1109/CDC56724.2024.10886614}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-86000515374&doi=10.1109%2fCDC56724.2024.10886614&partnerID=40&md5=f0bab8c0cd8fec781bc22c981b8eab20}, abstract = {Traditionally, based on convexity, multi-agent decision-making models can hardly handle scenarios where agents' cost functions defy this assumption, which is specifically required to ensure the existence of several equilibrium concepts. More recently, the advent of machine learning (ML), with its inherent non-convexity, has changed the conventional approach of pursuing convexity at all costs. This paper explores and integrates the robustness of game theoretic frameworks in managing conflicts among agents with the capacity of ML approaches, such as deep neural networks (DNNs), to capture complex agent behaviors. Specifically, we employ feed-forward DNNs to characterize agents' best response actions rather than modeling their goals with convex functions. We introduce a technical assumption on the weight of the DNN to establish the existence and uniqueness of Nash equilibria and present two distributed algorithms based on fixed-point iterations for their computation. Finally, we demonstrate the practical application of our framework to a noncooperative community of smart energy users under a dynamic time-of-use energy pricing scheme. © 2024 IEEE.}, type = {Conference paper}, publication_stage = {Final}, source = {Scopus}, note = {Cited by: 0} }
- Scarabaggio, P., Mignoni, N., Jantzen, J., Carli, R. & Dotoli, M. (2024) Model Predictive Control with Recursive Multi-step Input Convex Lipschitz Neural Networks: an Application to Smart Buildings IN Conference Proceedings – IEEE International Conference on Systems, Man and Cybernetics., 4005 – 4010. doi:10.1109/SMC54092.2024.10831606
[BibTeX] [Abstract] [Download PDF]Model Predictive Control (MPC) is an optimal control technique that employs a dynamic model of the controlled process and an optimization algorithm to determine the control strategy. Nevertheless, the cost and effort required to create and maintain dynamical models are often high, and solving the resulting optimal control problem can be computationally complex. In recent years, data-driven modeling has become an attractive alternative to approximate the behavior of dynamical systems, with the aim of alleviating these issues. However, using such models for model-based control can be challenging due to their typically nonlinear and nonconvex nature. To address these issues, we propose a recursive multi-step learning-based dynamical modeling framework to capture the temporal behavior of dynamic systems. We take advantage of Input Convex Lipschitz Neural Networks, which are explicitly designed to be convex and continuous with respect to their in-puts. We further show that these mathematical proprieties hold in a multi-step dynamical modeling framework. The proposed approach is evaluated in a real-life MPC experiment conducted in a smart building in the Samso Marina, Denmark. We show that the proposed approach keeps the internal temperature within comfort constraints while minimizing heating/cooling energy consumption. © 2024 IEEE.
@CONFERENCE{Scarabaggio20244005, author = {Scarabaggio, Paolo and Mignoni, Nicola and Jantzen, Jan and Carli, Raffaele and Dotoli, Mariagrazia}, title = {Model Predictive Control with Recursive Multi-step Input Convex Lipschitz Neural Networks: an Application to Smart Buildings}, year = {2024}, journal = {Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics}, pages = {4005 – 4010}, doi = {10.1109/SMC54092.2024.10831606}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85217858869&doi=10.1109%2fSMC54092.2024.10831606&partnerID=40&md5=33bc3afa8c718f5d9ceac4544c8b7302}, abstract = {Model Predictive Control (MPC) is an optimal control technique that employs a dynamic model of the controlled process and an optimization algorithm to determine the control strategy. Nevertheless, the cost and effort required to create and maintain dynamical models are often high, and solving the resulting optimal control problem can be computationally complex. In recent years, data-driven modeling has become an attractive alternative to approximate the behavior of dynamical systems, with the aim of alleviating these issues. However, using such models for model-based control can be challenging due to their typically nonlinear and nonconvex nature. To address these issues, we propose a recursive multi-step learning-based dynamical modeling framework to capture the temporal behavior of dynamic systems. We take advantage of Input Convex Lipschitz Neural Networks, which are explicitly designed to be convex and continuous with respect to their in-puts. We further show that these mathematical proprieties hold in a multi-step dynamical modeling framework. The proposed approach is evaluated in a real-life MPC experiment conducted in a smart building in the Samso Marina, Denmark. We show that the proposed approach keeps the internal temperature within comfort constraints while minimizing heating/cooling energy consumption. © 2024 IEEE.}, author_keywords = {Building Automation; Convex Optimization; Model Predictive Control; Neural Networks; Supervised Learning}, type = {Conference paper}, publication_stage = {Final}, source = {Scopus}, note = {Cited by: 0} }
- Mignoni, N., Scarabaggio, P., Caselli, S. M., Carli, R. & Dotoli, M. (2024) Generalized Nash Equilibrium Seeking for Crop Mix Selection in Sustainable Agriculture IN 2024 7th IEEE International Humanitarian Technologies Conference, IHTC 2024.. doi:10.1109/IHTC61819.2024.10855039
[BibTeX] [Abstract] [Download PDF]Since diversifying crop selection can significantly optimize resources, increase resilience to climate change, and contribute to sustainable development, decision-making tools are crucial to help farmers identify optimal crop cultivation strategies. This paper proposes a novel optimization framework for crop mix selection under the non-cooperative game-theoretical perspective, i.e., assuming that the agents (e.g., farmers and agriculture companies) behave selfishly. Such a perspective naturally arises when multiple agents are competing for shared resources, such as water, land, and carbon emissions quotas. First, we illustrate the system model, comprising both local and global resource constraints that the crop mix strategy of all agents must abide by. Then, we characterize the Generalized Nash Equilibrium problem stemming from such a formulation, providing an iterative equilibrium-seeking approach based on the consolidated operator splitting framework. Finally, we numerically test the proposed framework using real-world data. © 2024 IEEE.
@CONFERENCE{Mignoni2024, author = {Mignoni, Nicola and Scarabaggio, Paolo and Caselli, Sonia Marina and Carli, Raffaele and Dotoli, Mariagrazia}, title = {Generalized Nash Equilibrium Seeking for Crop Mix Selection in Sustainable Agriculture}, year = {2024}, journal = {2024 7th IEEE International Humanitarian Technologies Conference, IHTC 2024}, doi = {10.1109/IHTC61819.2024.10855039}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85217838518&doi=10.1109%2fIHTC61819.2024.10855039&partnerID=40&md5=5b71c043f8e65d34514cc668aedb80d0}, abstract = {Since diversifying crop selection can significantly optimize resources, increase resilience to climate change, and contribute to sustainable development, decision-making tools are crucial to help farmers identify optimal crop cultivation strategies. This paper proposes a novel optimization framework for crop mix selection under the non-cooperative game-theoretical perspective, i.e., assuming that the agents (e.g., farmers and agriculture companies) behave selfishly. Such a perspective naturally arises when multiple agents are competing for shared resources, such as water, land, and carbon emissions quotas. First, we illustrate the system model, comprising both local and global resource constraints that the crop mix strategy of all agents must abide by. Then, we characterize the Generalized Nash Equilibrium problem stemming from such a formulation, providing an iterative equilibrium-seeking approach based on the consolidated operator splitting framework. Finally, we numerically test the proposed framework using real-world data. © 2024 IEEE.}, author_keywords = {Agriculture 4.0; crop mix; game theory; Nash equilibrium seeking; optimization; sustainability}, type = {Conference paper}, publication_stage = {Final}, source = {Scopus}, note = {Cited by: 0} }
- Mignoni, N., Scarabaggio, P., Carli, R. & Dotoli, M. (2024) A Compact Convex Quadratically Constrained Formulation for a Class of Delivery Schedule Problems IN Proceedings of the IEEE Conference on Decision and Control., 8403 – 8408. doi:10.1109/CDC56724.2024.10885832
[BibTeX] [Abstract] [Download PDF]In this paper, we present a novel and efficient formulation of a common class of delivery schedule optimization problems. We define the overall model structure, which includes warehouses, clients, and service stations that can be visited by delivery agents, as well as the operational constraints the delivery process must abide, aiming at maximizing the number of delivered orders. We first provide a linear problem formulation, constituting the main baseline; hence, we construct an exact and more compact quadratically constrained version, which reduces the number of binary variables involved. Furthermore, we validate the proposed approach on a realistic numerical example, showing how less computational resources are needed, with respect to the baseline version, without excessively slowing down the convergence towards the optimum. © 2024 IEEE.
@CONFERENCE{Mignoni20248403, author = {Mignoni, Nicola and Scarabaggio, Paolo and Carli, Raffaele and Dotoli, Mariagrazia}, title = {A Compact Convex Quadratically Constrained Formulation for a Class of Delivery Schedule Problems}, year = {2024}, journal = {Proceedings of the IEEE Conference on Decision and Control}, pages = {8403 – 8408}, doi = {10.1109/CDC56724.2024.10885832}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-86000578121&doi=10.1109%2fCDC56724.2024.10885832&partnerID=40&md5=49e4d01c4d8ce4ffe9e0878227230f75}, abstract = {In this paper, we present a novel and efficient formulation of a common class of delivery schedule optimization problems. We define the overall model structure, which includes warehouses, clients, and service stations that can be visited by delivery agents, as well as the operational constraints the delivery process must abide, aiming at maximizing the number of delivered orders. We first provide a linear problem formulation, constituting the main baseline; hence, we construct an exact and more compact quadratically constrained version, which reduces the number of binary variables involved. Furthermore, we validate the proposed approach on a realistic numerical example, showing how less computational resources are needed, with respect to the baseline version, without excessively slowing down the convergence towards the optimum. © 2024 IEEE.}, type = {Conference paper}, publication_stage = {Final}, source = {Scopus}, note = {Cited by: 0} }
- Noghani, S. A., Scarabaggio, P., Carli, R. & Dotoli, M. (2024) Noncooperative Control of Energy Communities through Learning-based Response Dynamics IN IEEE International Conference on Automation Science and Engineering., 2732 – 2737. doi:10.1109/CASE59546.2024.10711353
[BibTeX] [Abstract] [Download PDF]With the growing availability of data, learning-based distributed energy management is emerging as a viable and efficient alternative to traditional model-based schemes. In this context, we propose a novel game-theoretic learning-based method for the distributed control of energy communities. In particular, we consider a community that includes several prosumers equipped with a renewable energy source and an energy storage system. The scheduling of energy activities of all prosumers is formulated as a noncooperative game. Nevertheless, unlike the state-of-the-art, where an optimization problem is typically defined to model the behavior of each prosumer, we approximate each prosumer response strategy using a neural network. We propose a distributed algorithm based on the well-known Banach-Picard iteration to efficiently seek for an equilibrium of the game. Lastly, the convergence and effectiveness of the proposed approach are validated through numerical simulations under different realistic scenarios. © 2024 IEEE.
@CONFERENCE{Noghani20242732, author = {Noghani, Saba Askari and Scarabaggio, Paolo and Carli, Raffaele and Dotoli, Mariagrazia}, title = {Noncooperative Control of Energy Communities through Learning-based Response Dynamics}, year = {2024}, journal = {IEEE International Conference on Automation Science and Engineering}, pages = {2732 – 2737}, doi = {10.1109/CASE59546.2024.10711353}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85208262627&doi=10.1109%2fCASE59546.2024.10711353&partnerID=40&md5=e074e4dacc838b87babe72ee8773baf3}, abstract = {With the growing availability of data, learning-based distributed energy management is emerging as a viable and efficient alternative to traditional model-based schemes. In this context, we propose a novel game-theoretic learning-based method for the distributed control of energy communities. In particular, we consider a community that includes several prosumers equipped with a renewable energy source and an energy storage system. The scheduling of energy activities of all prosumers is formulated as a noncooperative game. Nevertheless, unlike the state-of-the-art, where an optimization problem is typically defined to model the behavior of each prosumer, we approximate each prosumer response strategy using a neural network. We propose a distributed algorithm based on the well-known Banach-Picard iteration to efficiently seek for an equilibrium of the game. Lastly, the convergence and effectiveness of the proposed approach are validated through numerical simulations under different realistic scenarios. © 2024 IEEE.}, author_keywords = {energy management; game theory; learning-based; optimization; Renewable energy}, type = {Conference paper}, publication_stage = {Final}, source = {Scopus}, note = {Cited by: 0} }
- Zhukovskii, K., Ovsiannikova, P., Jhunjhunwala, P., Scarabaggio, P., Carli, R., Dotoli, M. & Vyatkin, V. (2024) Energy Consumption Optimisation for Horticultural Facilities IN IEEE International Conference on Emerging Technologies and Factory Automation, ETFA.. doi:10.1109/ETFA61755.2024.10710757
[BibTeX] [Abstract] [Download PDF]This paper proposes a framework designed to optimise energy consumption in vertical farming. It aims to maximise cost efficiency by balancing between minimising system operations during the electricity price peaks and the ability to trade capacity on the FCR market while also fulfilling constraints on the internal growing process. We consider that the vertical farming system has distributed control with a series of actuators controlled by various spatially distributed PLCs that we refer to as agents, to underline their independence. The paper conducts two experiments for a lO-agent system with a Pareto controller and a lOO-agent system with a Lagrangian approach and shows the balance between more cost-efficient momentary energy consumption control. © 2024 IEEE.
@CONFERENCE{Zhukovskii2024, author = {Zhukovskii, Kirill and Ovsiannikova, Polina and Jhunjhunwala, Pranay and Scarabaggio, Paolo and Carli, Raffaele and Dotoli, Mariagrazia and Vyatkin, Valeriy}, title = {Energy Consumption Optimisation for Horticultural Facilities}, year = {2024}, journal = {IEEE International Conference on Emerging Technologies and Factory Automation, ETFA}, doi = {10.1109/ETFA61755.2024.10710757}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85207826602&doi=10.1109%2fETFA61755.2024.10710757&partnerID=40&md5=301035e618ab242689424422b21164c4}, abstract = {This paper proposes a framework designed to optimise energy consumption in vertical farming. It aims to maximise cost efficiency by balancing between minimising system operations during the electricity price peaks and the ability to trade capacity on the FCR market while also fulfilling constraints on the internal growing process. We consider that the vertical farming system has distributed control with a series of actuators controlled by various spatially distributed PLCs that we refer to as agents, to underline their independence. The paper conducts two experiments for a lO-agent system with a Pareto controller and a lOO-agent system with a Lagrangian approach and shows the balance between more cost-efficient momentary energy consumption control. © 2024 IEEE.}, author_keywords = {energy consumption optimisation; multi-agent systems; vertical farming}, type = {Conference paper}, publication_stage = {Final}, source = {Scopus}, note = {Cited by: 0} }
2023
- Mignoni, N., Scarabaggio, P., Carli, R. & Dotoli, M. (2023) Control frameworks for transactive energy storage services in energy communities. IN Control Engineering Practice, 130.. doi:10.1016/j.conengprac.2022.105364
[BibTeX] [Abstract] [Download PDF]Recently, the decreasing cost of storage technologies and the emergence of economy-driven mechanisms for energy exchange are contributing to the spread of energy communities. In this context, this paper aims at defining innovative transactive control frameworks for energy communities equipped with independent service-oriented energy storage systems. The addressed control problem consists in optimally scheduling the energy activities of a group of prosumers, characterized by their own demand and renewable generation, and a group of energy storage service providers, able to store the prosumers’ energy surplus and, subsequently, release it upon a fee payment. We propose two novel resolution algorithms based on a game theoretical control formulation, a coordinated and an uncoordinated one, which can be alternatively used depending on the underlying communication architecture of the grid. The two proposed approaches are validated through numerical simulations on realistic scenarios. Results show that the use of a particular framework does not alter fairness, at least at the community level, i.e., no participant in the groups of prosumers or providers can strongly benefit from changing its strategy while compromising others’ welfare. Lastly, the approaches are compared with a centralized control method showing better computational results. © 2022 Elsevier Ltd
@ARTICLE{Mignoni2023, author = {Mignoni, Nicola and Scarabaggio, Paolo and Carli, Raffaele and Dotoli, Mariagrazia}, title = {Control frameworks for transactive energy storage services in energy communities}, year = {2023}, journal = {Control Engineering Practice}, volume = {130}, doi = {10.1016/j.conengprac.2022.105364}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85140312671&doi=10.1016%2fj.conengprac.2022.105364&partnerID=40&md5=c2f86f25172d9c67e24d1f09c9b54689}, abstract = {Recently, the decreasing cost of storage technologies and the emergence of economy-driven mechanisms for energy exchange are contributing to the spread of energy communities. In this context, this paper aims at defining innovative transactive control frameworks for energy communities equipped with independent service-oriented energy storage systems. The addressed control problem consists in optimally scheduling the energy activities of a group of prosumers, characterized by their own demand and renewable generation, and a group of energy storage service providers, able to store the prosumers’ energy surplus and, subsequently, release it upon a fee payment. We propose two novel resolution algorithms based on a game theoretical control formulation, a coordinated and an uncoordinated one, which can be alternatively used depending on the underlying communication architecture of the grid. The two proposed approaches are validated through numerical simulations on realistic scenarios. Results show that the use of a particular framework does not alter fairness, at least at the community level, i.e., no participant in the groups of prosumers or providers can strongly benefit from changing its strategy while compromising others’ welfare. Lastly, the approaches are compared with a centralized control method showing better computational results. © 2022 Elsevier Ltd}, author_keywords = {Distributed control; Energy communities; Energy storage systems; Game theory; Smart grids; Transactive control; Transactive energy management}, type = {Article}, publication_stage = {Final}, source = {Scopus}, note = {Cited by: 38; All Open Access, Green Open Access} }
- Atrigna, M., Buonanno, A., Carli, R., Cavone, G., Scarabaggio, P., Valenti, M., Graditi, G. & Dotoli, M. (2023) A Machine Learning Approach to Fault Prediction of Power Distribution Grids Under Heatwaves. IN IEEE Transactions on Industry Applications, 59.4835 – 4845. doi:10.1109/TIA.2023.3262230
[BibTeX] [Abstract] [Download PDF]Climate change is increasing the occurrence of the so-called heatwaves with a trend that is expected to worsen in the next years due to global warming. The growing intensity and duration of these extreme weather events are leading to a significant number of power system failures, especially in urban areas. This is drastically affecting the reliability and normal operation of power distribution grids around the world, with high financial costs and huge negative impacts on people’s life. Typically, the response to these failure events is approached by post-event analysis, aimed at identifying the grid areas that require resources to increase the resilience of the system and prevent future outages. Nevertheless, understanding the nature of heatwaves and forecasting their impact on power distribution systems can be useful to anticipate them and accelerate a reaction, possibly avoiding negative impacts on power systems and customers. In this study, a structured method to predict distribution grid disruptions caused by heatwaves is defined. The proposed method relies on machine learning to analyze previous failure data and forecast power grid outages using operational and meteorological information. The method is evaluated using real failure data from a large power distribution network located in southern Italy. © 1972-2012 IEEE.
@ARTICLE{Atrigna20234835, author = {Atrigna, Mauro and Buonanno, Amedeo and Carli, Raffaele and Cavone, Graziana and Scarabaggio, Paolo and Valenti, Maria and Graditi, Giorgio and Dotoli, Mariagrazia}, title = {A Machine Learning Approach to Fault Prediction of Power Distribution Grids Under Heatwaves}, year = {2023}, journal = {IEEE Transactions on Industry Applications}, volume = {59}, number = {4}, pages = {4835 – 4845}, doi = {10.1109/TIA.2023.3262230}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85151511272&doi=10.1109%2fTIA.2023.3262230&partnerID=40&md5=89991feff02c7dffe5f98c9f90e0be87}, abstract = {Climate change is increasing the occurrence of the so-called heatwaves with a trend that is expected to worsen in the next years due to global warming. The growing intensity and duration of these extreme weather events are leading to a significant number of power system failures, especially in urban areas. This is drastically affecting the reliability and normal operation of power distribution grids around the world, with high financial costs and huge negative impacts on people's life. Typically, the response to these failure events is approached by post-event analysis, aimed at identifying the grid areas that require resources to increase the resilience of the system and prevent future outages. Nevertheless, understanding the nature of heatwaves and forecasting their impact on power distribution systems can be useful to anticipate them and accelerate a reaction, possibly avoiding negative impacts on power systems and customers. In this study, a structured method to predict distribution grid disruptions caused by heatwaves is defined. The proposed method relies on machine learning to analyze previous failure data and forecast power grid outages using operational and meteorological information. The method is evaluated using real failure data from a large power distribution network located in southern Italy. © 1972-2012 IEEE.}, author_keywords = {condition monitoring; fault prediction; heatwaves; machine learning; power system failures; Power system reliability}, type = {Article}, publication_stage = {Final}, source = {Scopus}, note = {Cited by: 27} }
- Cavone, G., Stella, S., Scarabaggio, P., Carli, R., Lisi, S., Garavelli, A. C. & Dotoli, M. (2023) A Colored Petri Net Tool for the Design of Robotic Palletizing Cells IN 9th 2023 International Conference on Control, Decision and Information Technologies, CoDIT 2023., 12 – 17. doi:10.1109/CoDIT58514.2023.10284186
[BibTeX] [Abstract] [Download PDF]Driven by the digital transformation required by Logistics 4.0, the use of automation in warehouses is constantly growing. In particular, robotic palletizers offer significant potential for optimizing warehouse operations, thanks to higher flexibility and throughput than traditional palletizing systems. Despite the availability of several solutions in the market, the optimal deployment of a robotic palletizer in warehouses is not straightforward: a design phase is needed to determine the most convenient configuration that ensures automatic palletizing is fully integrated into the warehouse processes. In this paper, we propose a simulation-based versatile tool for modeling and analysis purposes, aimed at supporting the design of a robotic palletizing cell in a bottom-up fashion. As a core methodology, we employ timed colored Petri nets, which allow – once the analysis on packing requirements and constraints is conducted – to rapidly model the system as a composition of basic subsystems, and implement alternative simulations to evaluate the corresponding performance and effectively benchmark the alternative configurations. The proposed approach is applied to a real case study, showing its effectiveness in identifying the solution that achieves a good compromise between the use of resources and the performance of warehouse operations. © 2023 IEEE.
@CONFERENCE{Cavone202312, author = {Cavone, Graziana and Stella, Silvia and Scarabaggio, Paolo and Carli, Raffaele and Lisi, Stefano and Garavelli, Achille Claudio and Dotoli, Mariagrazia}, title = {A Colored Petri Net Tool for the Design of Robotic Palletizing Cells}, year = {2023}, journal = {9th 2023 International Conference on Control, Decision and Information Technologies, CoDIT 2023}, pages = {12 – 17}, doi = {10.1109/CoDIT58514.2023.10284186}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85177446511&doi=10.1109%2fCoDIT58514.2023.10284186&partnerID=40&md5=fb1f951ba12c45828607bf01cf994fff}, abstract = {Driven by the digital transformation required by Logistics 4.0, the use of automation in warehouses is constantly growing. In particular, robotic palletizers offer significant potential for optimizing warehouse operations, thanks to higher flexibility and throughput than traditional palletizing systems. Despite the availability of several solutions in the market, the optimal deployment of a robotic palletizer in warehouses is not straightforward: a design phase is needed to determine the most convenient configuration that ensures automatic palletizing is fully integrated into the warehouse processes. In this paper, we propose a simulation-based versatile tool for modeling and analysis purposes, aimed at supporting the design of a robotic palletizing cell in a bottom-up fashion. As a core methodology, we employ timed colored Petri nets, which allow - once the analysis on packing requirements and constraints is conducted - to rapidly model the system as a composition of basic subsystems, and implement alternative simulations to evaluate the corresponding performance and effectively benchmark the alternative configurations. The proposed approach is applied to a real case study, showing its effectiveness in identifying the solution that achieves a good compromise between the use of resources and the performance of warehouse operations. © 2023 IEEE.}, author_keywords = {Colored Petri net; Discrete Event Systems; Modeling and Simulation; Robotic Palletizing System}, type = {Conference paper}, publication_stage = {Final}, source = {Scopus}, note = {Cited by: 0} }
2022
- Scarabaggio, P., Carli, R., Parisio, A. & Dotoli, M. (2022) On Controlling Battery Degradation in Vehicle-to-Grid Energy Markets IN IEEE International Conference on Automation Science and Engineering., 1206 – 1211. doi:10.1109/CASE49997.2022.9926729
[BibTeX] [Abstract] [Download PDF]Nowadays, power grids are facing reduced total system inertia as traditional generators are phased out in favor of renewable energy sources. This issue is expected to deepen with the increasing penetration of electric vehicles (EVs). The influence of a single EV on power networks is low; nevertheless, the aggregate impact becomes relevant when they are properly coordinated. In this context, we consider the frequent case of a group of EVs connected to a parking lot with a photovoltaic facility. We propose a novel strategy to optimally control their batteries during the parking session, which is able to satisfy their requirements and energy constraints. EVs participate in a noncooperative energy market based on a smart pricing mechanism that is designed in order to increase the predictability and flexibility of the aggregate parking load. Differently from the existing contributions, we employ a novel approach to minimize the degradation of batteries. The effectiveness of the proposed method is validated through numerical experiments based on a real scenario. © 2022 IEEE.
@CONFERENCE{Scarabaggio20221206, author = {Scarabaggio, Paolo and Carli, Raffaele and Parisio, Alessandra and Dotoli, Mariagrazia}, title = {On Controlling Battery Degradation in Vehicle-to-Grid Energy Markets}, year = {2022}, journal = {IEEE International Conference on Automation Science and Engineering}, volume = {2022-August}, pages = {1206 – 1211}, doi = {10.1109/CASE49997.2022.9926729}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85141672066&doi=10.1109%2fCASE49997.2022.9926729&partnerID=40&md5=ed24721222037df90795b0e4d7a1cbb1}, abstract = {Nowadays, power grids are facing reduced total system inertia as traditional generators are phased out in favor of renewable energy sources. This issue is expected to deepen with the increasing penetration of electric vehicles (EVs). The influence of a single EV on power networks is low; nevertheless, the aggregate impact becomes relevant when they are properly coordinated. In this context, we consider the frequent case of a group of EVs connected to a parking lot with a photovoltaic facility. We propose a novel strategy to optimally control their batteries during the parking session, which is able to satisfy their requirements and energy constraints. EVs participate in a noncooperative energy market based on a smart pricing mechanism that is designed in order to increase the predictability and flexibility of the aggregate parking load. Differently from the existing contributions, we employ a novel approach to minimize the degradation of batteries. The effectiveness of the proposed method is validated through numerical experiments based on a real scenario. © 2022 IEEE.}, author_keywords = {charging scheduling; Electric vehicles; model predictive control}, type = {Conference paper}, publication_stage = {Final}, source = {Scopus}, note = {Cited by: 1} }
- Scarabaggio, P., Carli, R., Cavone, G., Epicoco, N. & Dotoli, M. (2022) Nonpharmaceutical Stochastic Optimal Control Strategies to Mitigate the COVID-19 Spread. IN IEEE Transactions on Automation Science and Engineering, 19.560 – 575. doi:10.1109/TASE.2021.3111338
[BibTeX] [Abstract] [Download PDF]This article proposes a stochastic nonlinear model predictive controller to support policymakers in determining robust optimal nonpharmaceutical strategies to tackle the COVID-19 pandemic waves. First, a time-varying SIRCQTHE epidemiological model is defined to get predictions on the pandemic dynamics. A stochastic model predictive control problem is then formulated to select the necessary control actions (i.e., restrictions on the mobility for different socioeconomic categories) to minimize the socioeconomic costs. In particular, considering the uncertainty characterizing this decision-making process, we ensure that the capacity of the healthcare system is not violated in accordance with a chance constraint approach. The effectiveness of the presented method in properly supporting the definition of diversified nonpharmaceutical strategies for tackling the COVID-19 spread is tested on the network of Italian regions using real data. The proposed approach can be easily extended to cope with other countries’ characteristics and different levels of the spatial scale. Note to Practitioners – This article is motivated by the emerging need for developing effective methods to support policymakers in mitigating the effects of the COVID-19 pandemic. The proposed feedback control strategy – combining a multiregion epidemiological model with a nonlinear stochastic model predictive control approach – allows the robust identification of the most effective restrictive measures considering the corresponding effects on the healthcare and socioeconomic systems. The proposed framework is a general and flexible method that can be applied to various real scenarios, leveraging mobility data, available from the Google mobility service, to recognize patterns and predict future behaviors of individuals. © 2004-2012 IEEE.
@ARTICLE{Scarabaggio2022560, author = {Scarabaggio, Paolo and Carli, Raffaele and Cavone, Graziana and Epicoco, Nicola and Dotoli, Mariagrazia}, title = {Nonpharmaceutical Stochastic Optimal Control Strategies to Mitigate the COVID-19 Spread}, year = {2022}, journal = {IEEE Transactions on Automation Science and Engineering}, volume = {19}, number = {2}, pages = {560 – 575}, doi = {10.1109/TASE.2021.3111338}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85115686920&doi=10.1109%2fTASE.2021.3111338&partnerID=40&md5=ef02a3b0f8f2eeff0ec2f0e0a861a0b8}, abstract = {This article proposes a stochastic nonlinear model predictive controller to support policymakers in determining robust optimal nonpharmaceutical strategies to tackle the COVID-19 pandemic waves. First, a time-varying SIRCQTHE epidemiological model is defined to get predictions on the pandemic dynamics. A stochastic model predictive control problem is then formulated to select the necessary control actions (i.e., restrictions on the mobility for different socioeconomic categories) to minimize the socioeconomic costs. In particular, considering the uncertainty characterizing this decision-making process, we ensure that the capacity of the healthcare system is not violated in accordance with a chance constraint approach. The effectiveness of the presented method in properly supporting the definition of diversified nonpharmaceutical strategies for tackling the COVID-19 spread is tested on the network of Italian regions using real data. The proposed approach can be easily extended to cope with other countries' characteristics and different levels of the spatial scale. Note to Practitioners - This article is motivated by the emerging need for developing effective methods to support policymakers in mitigating the effects of the COVID-19 pandemic. The proposed feedback control strategy - combining a multiregion epidemiological model with a nonlinear stochastic model predictive control approach - allows the robust identification of the most effective restrictive measures considering the corresponding effects on the healthcare and socioeconomic systems. The proposed framework is a general and flexible method that can be applied to various real scenarios, leveraging mobility data, available from the Google mobility service, to recognize patterns and predict future behaviors of individuals. © 2004-2012 IEEE.}, author_keywords = {COVID-19; epidemic control; mitigation strategies; pandemic modeling; stochastic model predictive control (MPC)}, type = {Article}, publication_stage = {Final}, source = {Scopus}, note = {Cited by: 28; All Open Access, Green Open Access} }
- Scarabaggio, P., Grammatico, S., Carli, R. & Dotoli, M. (2022) Distributed Demand Side Management with Stochastic Wind Power Forecasting. IN IEEE Transactions on Control Systems Technology, 30.97 – 112. doi:10.1109/TCST.2021.3056751
[BibTeX] [Abstract] [Download PDF]In this article, we propose a distributed demand-side management (DSM) approach for smart grids taking into account uncertainty in wind power forecasting. The smart grid model comprehends traditional users as well as active users (prosumers). Through a rolling-horizon approach, prosumers participate in a DSM program, aiming at minimizing their cost in the presence of uncertain wind power generation by a game theory approach. We assume that each user selfishly formulates its grid optimization problem as a noncooperative game. The core challenge in this article is defining an approach to cope with the uncertainty in wind power availability. We tackle this issue from two different sides: by employing the expected value to define a deterministic counterpart for the problem and by adopting a stochastic approximated framework. In the latter case, we employ the sample average approximation (SAA) technique, whose results are based on a probability density function (PDF) for the wind speed forecasts. We improve the PDF by using historical wind speed data, and by employing a control index that takes into account the weather condition stability. Numerical simulations on a real data set show that the proposed stochastic strategy generates lower individual costs compared to the standard expected value approach. © 1993-2012 IEEE.
@ARTICLE{Scarabaggio202297, author = {Scarabaggio, Paolo and Grammatico, Sergio and Carli, Raffaele and Dotoli, Mariagrazia}, title = {Distributed Demand Side Management with Stochastic Wind Power Forecasting}, year = {2022}, journal = {IEEE Transactions on Control Systems Technology}, volume = {30}, number = {1}, pages = {97 – 112}, doi = {10.1109/TCST.2021.3056751}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100918524&doi=10.1109%2fTCST.2021.3056751&partnerID=40&md5=4f491e205e325ad467291e71ce8dbff8}, abstract = {In this article, we propose a distributed demand-side management (DSM) approach for smart grids taking into account uncertainty in wind power forecasting. The smart grid model comprehends traditional users as well as active users (prosumers). Through a rolling-horizon approach, prosumers participate in a DSM program, aiming at minimizing their cost in the presence of uncertain wind power generation by a game theory approach. We assume that each user selfishly formulates its grid optimization problem as a noncooperative game. The core challenge in this article is defining an approach to cope with the uncertainty in wind power availability. We tackle this issue from two different sides: by employing the expected value to define a deterministic counterpart for the problem and by adopting a stochastic approximated framework. In the latter case, we employ the sample average approximation (SAA) technique, whose results are based on a probability density function (PDF) for the wind speed forecasts. We improve the PDF by using historical wind speed data, and by employing a control index that takes into account the weather condition stability. Numerical simulations on a real data set show that the proposed stochastic strategy generates lower individual costs compared to the standard expected value approach. © 1993-2012 IEEE.}, author_keywords = {Demand-side management (DSM); model predictive control; sample average approximation (SAA); smart grid; stochastic optimization}, type = {Article}, publication_stage = {Final}, source = {Scopus}, note = {Cited by: 98; All Open Access, Green Open Access} }
- Scarabaggio, P., Carli, R. & Dotoli, M. (2022) Noncooperative Equilibrium-Seeking in Distributed Energy Systems under AC Power Flow Nonlinear Constraints. IN IEEE Transactions on Control of Network Systems, 9.1731 – 1742. doi:10.1109/TCNS.2022.3181527
[BibTeX] [Abstract] [Download PDF]Power distribution grids are commonly controlled through centralized approaches, such as the optimal power flow. However, the current pervasive deployment of distributed renewable energy sources and the increasing growth of active players, providing ancillary services to the grid, have made these centralized frameworks no longer appropriate. In this context, we propose a novel noncooperative control mechanism for optimally regulating the operation of power distribution networks equipped with traditional loads, distributed generation, and active users. The latter, also known as prosumers, contribute to the grid optimization process by leveraging their flexible demand, dispatchable generation capability, and/or energy storage potential. Active users participate in a noncooperative liberalized market designed to increase the penetration of renewable generation and improve the predictability of power injection from the high-voltage grid. The novelty of our game-theoretical approach consists in incorporating economic factors as well as physical constraints and grid stability aspects. Finally, by integrating the proposed framework into a rolling-horizon approach, we show its effectiveness and resiliency through numerical experiments. © 2014 IEEE.
@ARTICLE{Scarabaggio20221731, author = {Scarabaggio, Paolo and Carli, Raffaele and Dotoli, Mariagrazia}, title = {Noncooperative Equilibrium-Seeking in Distributed Energy Systems under AC Power Flow Nonlinear Constraints}, year = {2022}, journal = {IEEE Transactions on Control of Network Systems}, volume = {9}, number = {4}, pages = {1731 – 1742}, doi = {10.1109/TCNS.2022.3181527}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85132727510&doi=10.1109%2fTCNS.2022.3181527&partnerID=40&md5=01b1c79aa91772c7e9920d019e70b5b8}, abstract = {Power distribution grids are commonly controlled through centralized approaches, such as the optimal power flow. However, the current pervasive deployment of distributed renewable energy sources and the increasing growth of active players, providing ancillary services to the grid, have made these centralized frameworks no longer appropriate. In this context, we propose a novel noncooperative control mechanism for optimally regulating the operation of power distribution networks equipped with traditional loads, distributed generation, and active users. The latter, also known as prosumers, contribute to the grid optimization process by leveraging their flexible demand, dispatchable generation capability, and/or energy storage potential. Active users participate in a noncooperative liberalized market designed to increase the penetration of renewable generation and improve the predictability of power injection from the high-voltage grid. The novelty of our game-theoretical approach consists in incorporating economic factors as well as physical constraints and grid stability aspects. Finally, by integrating the proposed framework into a rolling-horizon approach, we show its effectiveness and resiliency through numerical experiments. © 2014 IEEE.}, author_keywords = {AC power flow; distributed control; electric power networks; game theory}, type = {Article}, publication_stage = {Final}, source = {Scopus}, note = {Cited by: 38; All Open Access, Green Open Access, Hybrid Gold Open Access} }
- Mignoni, N., Scarabaggio, P., Carli, R. & Dotoli, M. (2022) Game Theoretical Control Frameworks for Multiple Energy Storage Services in Energy Communities IN 2022 8th International Conference on Control, Decision and Information Technologies, CoDIT 2022., 1580 – 1585. doi:10.1109/CoDIT55151.2022.9804087
[BibTeX] [Abstract] [Download PDF]In the last decade, distributed energy generation and storage have significantly contributed to the widespread of energy communities. In this context, we propose an energy community model constituted by prosumers, characterized by their own demand and renewable generation, and service-oriented energy storage providers, able to store energy surplus and release it upon a fee payment. We address the problem of optimally schedule the energy flows in the community, with the final goal of making the prosumers’ energy supply more efficient, while creating a sustainable and profitable business model for storage providers. The proposed resolution algorithms are based on decentralized and distributed game theoretical control schemes. These approaches are mathematically formulated and then effectively validated and compared with a centralized method through numerical simulations on realistic scenarios. © 2022 IEEE.
@CONFERENCE{Mignoni20221580, author = {Mignoni, Nicola and Scarabaggio, Paolo and Carli, Raffaele and Dotoli, Mariagrazia}, title = {Game Theoretical Control Frameworks for Multiple Energy Storage Services in Energy Communities}, year = {2022}, journal = {2022 8th International Conference on Control, Decision and Information Technologies, CoDIT 2022}, pages = {1580 – 1585}, doi = {10.1109/CoDIT55151.2022.9804087}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85134303591&doi=10.1109%2fCoDIT55151.2022.9804087&partnerID=40&md5=c5c686570c9998d9639b765af7b24245}, abstract = {In the last decade, distributed energy generation and storage have significantly contributed to the widespread of energy communities. In this context, we propose an energy community model constituted by prosumers, characterized by their own demand and renewable generation, and service-oriented energy storage providers, able to store energy surplus and release it upon a fee payment. We address the problem of optimally schedule the energy flows in the community, with the final goal of making the prosumers' energy supply more efficient, while creating a sustainable and profitable business model for storage providers. The proposed resolution algorithms are based on decentralized and distributed game theoretical control schemes. These approaches are mathematically formulated and then effectively validated and compared with a centralized method through numerical simulations on realistic scenarios. © 2022 IEEE.}, type = {Conference paper}, publication_stage = {Final}, source = {Scopus}, note = {Cited by: 1} }
- Nasiri, F., Ooka, R., Haghighat, F., Shirzadi, N., Dotoli, M., Carli, R., Scarabaggio, P., Behzadi, A., Rahnama, S., Afshari, A., Kuznik, F., Fabrizio, E., Choudhary, R. & Sadrizadeh, S. (2022) Data Analytics and Information Technologies for Smart Energy Storage Systems: A State-of-the-Art Review. IN Sustainable Cities and Society, 84.. doi:10.1016/j.scs.2022.104004
[BibTeX] [Abstract] [Download PDF]This article provides a state-of-the-art review on emerging applications of smart tools such as data analytics and smart technologies such as internet-of-things in case of design, management and control of energy storage systems. In particular, we have established a classification of the types and targets of various predictive analytics for estimation of load, energy prices, renewable energy inputs, state of the charge, fault diagnosis, etc. In addition, the applications of information technologies, and in particular, use of cloud, internet-of-things, building management systems and building information modeling and their contributions to management of energy storage systems will be reviewed in details. The paper concludes by highlighting the emerging issues in smart energy storage systems and providing directions for future research. © 2022 Elsevier Ltd
@ARTICLE{Nasiri2022, author = {Nasiri, Fuzhan and Ooka, Ryozo and Haghighat, Fariborz and Shirzadi, Navid and Dotoli, Mariagrazia and Carli, Raffaele and Scarabaggio, Paolo and Behzadi, Amirmohammad and Rahnama, Samira and Afshari, Alireza and Kuznik, Frédéric and Fabrizio, Enrico and Choudhary, Ruchi and Sadrizadeh, Sasan}, title = {Data Analytics and Information Technologies for Smart Energy Storage Systems: A State-of-the-Art Review}, year = {2022}, journal = {Sustainable Cities and Society}, volume = {84}, doi = {10.1016/j.scs.2022.104004}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85133235991&doi=10.1016%2fj.scs.2022.104004&partnerID=40&md5=c1409a9f5cd360d29ca6e0f1bf7f9fe9}, abstract = {This article provides a state-of-the-art review on emerging applications of smart tools such as data analytics and smart technologies such as internet-of-things in case of design, management and control of energy storage systems. In particular, we have established a classification of the types and targets of various predictive analytics for estimation of load, energy prices, renewable energy inputs, state of the charge, fault diagnosis, etc. In addition, the applications of information technologies, and in particular, use of cloud, internet-of-things, building management systems and building information modeling and their contributions to management of energy storage systems will be reviewed in details. The paper concludes by highlighting the emerging issues in smart energy storage systems and providing directions for future research. © 2022 Elsevier Ltd}, author_keywords = {Artificial Intelligence; Data Analytics; Energy Storage; Information Technology; Renewable Energy Intermittency; Smart Systems}, type = {Article}, publication_stage = {Final}, source = {Scopus}, note = {Cited by: 14; All Open Access, Green Open Access} }
2021
- Atrigna, M., Buonanno, A., Carli, R., Cavone, G., Scarabaggio, P., Valenti, M., Graditi, G. & Dotoli, M. (2021) Effects of Heatwaves on the Failure of Power Distribution Grids: A Fault Prediction System Based on Machine Learning IN 21st IEEE International Conference on Environment and Electrical Engineering and 2021 5th IEEE Industrial and Commercial Power System Europe, EEEIC / I and CPS Europe 2021 – Proceedings.. doi:10.1109/EEEIC/ICPSEurope51590.2021.9584751
[BibTeX] [Abstract] [Download PDF]Nowadays, a power system failure can drastically affect the reliability and normal operation of power distribution grids. The preparation for these failure events is currently approached with post-event analysis to identify the area of the system that requires the most resources in order to prevent future failures. Nevertheless, the forecasting of such events can be useful to anticipate the failure and possibly avoid it. In this work, we employ several machine learning approaches to analyze historical failure data and predict power grid outages based on operational and meteorological data. The approach is tested with real failure data of a power distribution network in the South of Italy, demonstrating advantageous results also to determine areas requiring particular attention. © 2021 IEEE
@CONFERENCE{Atrigna2021, author = {Atrigna, Mauro and Buonanno, Amedeo and Carli, Raffaele and Cavone, Graziana and Scarabaggio, Paolo and Valenti, Maria and Graditi, Giorgio and Dotoli, Mariagrazia}, title = {Effects of Heatwaves on the Failure of Power Distribution Grids: A Fault Prediction System Based on Machine Learning}, year = {2021}, journal = {21st IEEE International Conference on Environment and Electrical Engineering and 2021 5th IEEE Industrial and Commercial Power System Europe, EEEIC / I and CPS Europe 2021 - Proceedings}, doi = {10.1109/EEEIC/ICPSEurope51590.2021.9584751}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126456706&doi=10.1109%2fEEEIC%2fICPSEurope51590.2021.9584751&partnerID=40&md5=fc9788f00e259fdaabf0cb50c06253be}, abstract = {Nowadays, a power system failure can drastically affect the reliability and normal operation of power distribution grids. The preparation for these failure events is currently approached with post-event analysis to identify the area of the system that requires the most resources in order to prevent future failures. Nevertheless, the forecasting of such events can be useful to anticipate the failure and possibly avoid it. In this work, we employ several machine learning approaches to analyze historical failure data and predict power grid outages based on operational and meteorological data. The approach is tested with real failure data of a power distribution network in the South of Italy, demonstrating advantageous results also to determine areas requiring particular attention. © 2021 IEEE}, author_keywords = {machine learning; Power system failures; Power system reliability}, type = {Conference paper}, publication_stage = {Final}, source = {Scopus}, note = {Cited by: 4} }
- Calefati, M., Proia, S., Scarabaggio, P., Carli, R. & Dotoli, M. (2021) A Decentralized Noncooperative Control Approach for Sharing Energy Storage Systems in Energy Communities IN Conference Proceedings – IEEE International Conference on Systems, Man and Cybernetics., 1430 – 1435. doi:10.1109/SMC52423.2021.9658851
[BibTeX] [Abstract] [Download PDF]This paper focuses on the optimal scheduling of the charging and discharging strategies of a community energy storage (CES) system, which is shared by the prosumers belonging to a grid-connected energy community. The prosumers own renewable energy sources (RESs), while they can buy/sell their energy imbalance directly from/to the power grid. For the sake of increasing the penetration of RESs and reducing the operating cost, prosumers leverage on the shared CES: in particular, each user can only employ a portion of the overall CES charge/discharge profile. Differently from the related literature, where storage devices are individually owned and the battery degradation aspects are typically disregarded, we propose a novel control mechanism based on noncooperative game theory, which allows users to minimize their energy cost as well as concur on the CES resources allocation with minimal-degradation. The effectiveness of the method is validated through numerical experiments on a realistic case study, where a shared CES supplies energy to the local community of residential prosumers. Finally, the comparison with a centralized control approach shows that the proposed framework allows all prosumers to achieve a fair cost-optimal utilization of the shared CES. © 2021 IEEE.
@CONFERENCE{Calefati20211430, author = {Calefati, Marino and Proia, Silvia and Scarabaggio, Paolo and Carli, Raffaele and Dotoli, Mariagrazia}, title = {A Decentralized Noncooperative Control Approach for Sharing Energy Storage Systems in Energy Communities}, year = {2021}, journal = {Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics}, pages = {1430 – 1435}, doi = {10.1109/SMC52423.2021.9658851}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124302216&doi=10.1109%2fSMC52423.2021.9658851&partnerID=40&md5=9472abc4fceb04dd351c66a9d3b2a30b}, abstract = {This paper focuses on the optimal scheduling of the charging and discharging strategies of a community energy storage (CES) system, which is shared by the prosumers belonging to a grid-connected energy community. The prosumers own renewable energy sources (RESs), while they can buy/sell their energy imbalance directly from/to the power grid. For the sake of increasing the penetration of RESs and reducing the operating cost, prosumers leverage on the shared CES: in particular, each user can only employ a portion of the overall CES charge/discharge profile. Differently from the related literature, where storage devices are individually owned and the battery degradation aspects are typically disregarded, we propose a novel control mechanism based on noncooperative game theory, which allows users to minimize their energy cost as well as concur on the CES resources allocation with minimal-degradation. The effectiveness of the method is validated through numerical experiments on a realistic case study, where a shared CES supplies energy to the local community of residential prosumers. Finally, the comparison with a centralized control approach shows that the proposed framework allows all prosumers to achieve a fair cost-optimal utilization of the shared CES. © 2021 IEEE.}, author_keywords = {decentralized control; energy community; energy storage; game theory; noncooperative control}, type = {Conference paper}, publication_stage = {Final}, source = {Scopus}, note = {Cited by: 2} }
- Scarabaggio, P., Carli, R., Jantzen, J. & Dotoli, M. (2021) Stochastic model predictive control of community energy storage under high renewable penetration IN 2021 29th Mediterranean Conference on Control and Automation, MED 2021., 973 – 978. doi:10.1109/MED51440.2021.9480353
[BibTeX] [Abstract] [Download PDF]This paper focuses on the robust optimal on-line scheduling of a grid-connected energy community, where users are equipped with non-controllable (NCLs) and controllable loads (CLs) and share renewable energy sources (RESs) and a community energy storage system (CESS). Leveraging on the pricing signals gathered from the power grid and the predicted values for local production and demand, the energy activities inside the community are decided by a community energy manager. Differently from literature contributions commonly focused on deterministic optimal control schemes, to cope with the uncertainty that affects the forecast of the inflexible demand profile and the renewable production curve, we propose a Stochastic Model Predictive Control (MPC) approach aimed at minimizing the community energy costs. The effectiveness of the method is validated through numerical experiments on the marina of Ballen, Samso (Denmark). The comparison with a standard deterministic optimal control approach shows that the proposed stochastic MPC achieves higher performance in terms of minimized energy cost and maximized self-consumption of on-site production. © 2021 IEEE.
@CONFERENCE{Scarabaggio2021973, author = {Scarabaggio, Paolo and Carli, Raffaele and Jantzen, Jan and Dotoli, Mariagrazia}, title = {Stochastic model predictive control of community energy storage under high renewable penetration}, year = {2021}, journal = {2021 29th Mediterranean Conference on Control and Automation, MED 2021}, pages = {973 – 978}, doi = {10.1109/MED51440.2021.9480353}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85113644274&doi=10.1109%2fMED51440.2021.9480353&partnerID=40&md5=6156faadbaf382124749771a715a60df}, abstract = {This paper focuses on the robust optimal on-line scheduling of a grid-connected energy community, where users are equipped with non-controllable (NCLs) and controllable loads (CLs) and share renewable energy sources (RESs) and a community energy storage system (CESS). Leveraging on the pricing signals gathered from the power grid and the predicted values for local production and demand, the energy activities inside the community are decided by a community energy manager. Differently from literature contributions commonly focused on deterministic optimal control schemes, to cope with the uncertainty that affects the forecast of the inflexible demand profile and the renewable production curve, we propose a Stochastic Model Predictive Control (MPC) approach aimed at minimizing the community energy costs. The effectiveness of the method is validated through numerical experiments on the marina of Ballen, Samso (Denmark). The comparison with a standard deterministic optimal control approach shows that the proposed stochastic MPC achieves higher performance in terms of minimized energy cost and maximized self-consumption of on-site production. © 2021 IEEE.}, author_keywords = {Community energy storage; Community renewables; Energy community; Energy management; On-line energy scheduling; Stochastic model predictive control}, type = {Conference paper}, publication_stage = {Final}, source = {Scopus}, note = {Cited by: 13} }
- Scarabaggio, P., Carli, R., Cavone, G., Epicoco, N. & Dotoli, M. (2021) Modeling, estimation, and analysis of COVID-19 secondary waves: The Case of the Italian Country IN 2021 29th Mediterranean Conference on Control and Automation, MED 2021., 794 – 800. doi:10.1109/MED51440.2021.9480319
[BibTeX] [Abstract] [Download PDF]The recent trends of the COVID-19 research have been devoted to disease transmission modeling, with the aim of investigating the effects of different mitigation strategies mainly through scenario-based simulations. In this context we propose a novel non-linear time-varying model that effectively supports policy-makers in predicting and analyzing the dynamics of COVID-19 secondary waves. Specifically, this paper proposes an accurate SIRUCQTHE epidemiological model to get reliable predictions on the pandemic dynamics. Differently from the related literature, in the fitting phase, we make use of the google mobility reports to identify and predict the evolution of the infection rate. The effectiveness of the presented method is tested on the network of Italian regions. First, we describe the Italian epidemiological scenario in the COVID-19 second wave of contagions, showing the raw data available for the Italian scenario and discussing the main assumptions on the system parameters. Then, we present the different steps of the procedure used for the dynamical fitting of the SIRUCQTHE model. Finally, we compare the estimation results with the real data on the COVID-19 secondary waves in Italy. Provided the availability of reliable data to calibrate the model in heterogeneous scenarios, the proposed approach can be easily extended to cope with other scenarios. © 2021 IEEE.
@CONFERENCE{Scarabaggio2021794, author = {Scarabaggio, Paolo and Carli, Raffaele and Cavone, Graziana and Epicoco, Nicola and Dotoli, Mariagrazia}, title = {Modeling, estimation, and analysis of COVID-19 secondary waves: The Case of the Italian Country}, year = {2021}, journal = {2021 29th Mediterranean Conference on Control and Automation, MED 2021}, pages = {794 – 800}, doi = {10.1109/MED51440.2021.9480319}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85113602900&doi=10.1109%2fMED51440.2021.9480319&partnerID=40&md5=980feaa724975719c46c214ad1dcbfed}, abstract = {The recent trends of the COVID-19 research have been devoted to disease transmission modeling, with the aim of investigating the effects of different mitigation strategies mainly through scenario-based simulations. In this context we propose a novel non-linear time-varying model that effectively supports policy-makers in predicting and analyzing the dynamics of COVID-19 secondary waves. Specifically, this paper proposes an accurate SIRUCQTHE epidemiological model to get reliable predictions on the pandemic dynamics. Differently from the related literature, in the fitting phase, we make use of the google mobility reports to identify and predict the evolution of the infection rate. The effectiveness of the presented method is tested on the network of Italian regions. First, we describe the Italian epidemiological scenario in the COVID-19 second wave of contagions, showing the raw data available for the Italian scenario and discussing the main assumptions on the system parameters. Then, we present the different steps of the procedure used for the dynamical fitting of the SIRUCQTHE model. Finally, we compare the estimation results with the real data on the COVID-19 secondary waves in Italy. Provided the availability of reliable data to calibrate the model in heterogeneous scenarios, the proposed approach can be easily extended to cope with other scenarios. © 2021 IEEE.}, author_keywords = {COVID-19; Dynamical fitting; Estimation; Identification; Pandemic modeling}, type = {Conference paper}, publication_stage = {Final}, source = {Scopus}, note = {Cited by: 2} }
- Scarabaggio, P., Carli, R., Cavone, G., Epicoco, N. & Dotoli, M. (2021) Modeling, Estimation, and Optimal Control of Anti-COVID-19 Multi-dose Vaccine Administration IN IEEE International Conference on Automation Science and Engineering., 990 – 995. doi:10.1109/CASE49439.2021.9551418
[BibTeX] [Abstract] [Download PDF]The recent trends of the COVID-19 research are being devoted to disease transmission modeling in presence of vaccinated individuals, while the emerging needs are being focused on developing effective strategies for the optimal distribution of vaccine between population. In this context, we propose a novel non-linear time-varying model that effectively supports policy-makers in predicting and analyzing the dynamics of COVID-19 when partially and fully immune individuals are included in the population. Differently from the related literature, where the common strategies typically rely on the prioritization of the different classes of individuals, we propose a novel Model Predictive Control approach to optimally control the multi-dose vaccine administration in the case the available number of doses is not sufficient to cover the whole population. Focusing on the minimization of the expected number of deaths, the approach discriminates between the number of first and second doses. We calibrate the model on the Israeli scenario using real data and we estimate the impact of the vaccine administration on the virus dynamics. Lastly, we assess the impact of the first dose of the Pfizer’s vaccine confirming the results of clinical tests. © 2021 IEEE.
@CONFERENCE{Scarabaggio2021990, author = {Scarabaggio, Paolo and Carli, Raffaele and Cavone, Graziana and Epicoco, Nicola and Dotoli, Mariagrazia}, title = {Modeling, Estimation, and Optimal Control of Anti-COVID-19 Multi-dose Vaccine Administration}, year = {2021}, journal = {IEEE International Conference on Automation Science and Engineering}, volume = {2021-August}, pages = {990 – 995}, doi = {10.1109/CASE49439.2021.9551418}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85117035432&doi=10.1109%2fCASE49439.2021.9551418&partnerID=40&md5=489bcdcd710fb127ad522dbebe163265}, abstract = {The recent trends of the COVID-19 research are being devoted to disease transmission modeling in presence of vaccinated individuals, while the emerging needs are being focused on developing effective strategies for the optimal distribution of vaccine between population. In this context, we propose a novel non-linear time-varying model that effectively supports policy-makers in predicting and analyzing the dynamics of COVID-19 when partially and fully immune individuals are included in the population. Differently from the related literature, where the common strategies typically rely on the prioritization of the different classes of individuals, we propose a novel Model Predictive Control approach to optimally control the multi-dose vaccine administration in the case the available number of doses is not sufficient to cover the whole population. Focusing on the minimization of the expected number of deaths, the approach discriminates between the number of first and second doses. We calibrate the model on the Israeli scenario using real data and we estimate the impact of the vaccine administration on the virus dynamics. Lastly, we assess the impact of the first dose of the Pfizer's vaccine confirming the results of clinical tests. © 2021 IEEE.}, author_keywords = {COVID-19; model predictive control; pandemic modeling; vaccine; vaccine distribution}, type = {Conference paper}, publication_stage = {Final}, source = {Scopus}, note = {Cited by: 7; All Open Access, Green Open Access} }
2020
- Scarabaggio, P., Carli, R. & Dotoli, M. (2020) A fast and effective algorithm for influence maximization in large-scale independent cascade networks IN 7th International Conference on Control, Decision and Information Technologies, CoDIT 2020., 639 – 644. doi:10.1109/CoDIT49905.2020.9263914
[BibTeX] [Abstract] [Download PDF]A characteristic of social networks is the ability to quickly spread information between a large group of people. The widespread use of online social networks (e.g., Facebook) increases the interest of researchers on how influence propagates through these networks. One of the most important research issues in this field is the so-called influence maximization problem, which essentially consists in selecting the most influential users (i.e., those who are able to maximize the spread of influence through the social network). Due to its practical importance in various applications (e.g., viral marketing), such a problem has been studied in several variants. Nevertheless, the current open challenge in the resolution of the influence maximization problem still concerns achieving a good trade-off between accuracy and computational time. In this context, based on independent cascade modeling of social networks, we propose a novel low-complexity and highly accurate algorithm for selecting an initial group of nodes to maximize the spread of influence in large-scale networks. In particular, the key idea consists in iteratively removing the overlap of influence spread induced by different seed nodes. The application to several numerical experiments based on real datasets proves that the proposed algorithm effectively finds practical near-optimal solutions of the addressed influence maximization problem in a computationally efficient fashion. Finally, the comparison with the state of the art algorithms demonstrates that in large scale scenarios the proposed approach shows higher performance in terms of influence spread and running time. © 2020 IEEE.
@CONFERENCE{Scarabaggio2020639, author = {Scarabaggio, Paolo and Carli, Raffaele and Dotoli, Mariagrazia}, title = {A fast and effective algorithm for influence maximization in large-scale independent cascade networks}, year = {2020}, journal = {7th International Conference on Control, Decision and Information Technologies, CoDIT 2020}, pages = {639 – 644}, doi = {10.1109/CoDIT49905.2020.9263914}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85098236199&doi=10.1109%2fCoDIT49905.2020.9263914&partnerID=40&md5=003f7d44f921ecd0bf436dacb2d3e136}, abstract = {A characteristic of social networks is the ability to quickly spread information between a large group of people. The widespread use of online social networks (e.g., Facebook) increases the interest of researchers on how influence propagates through these networks. One of the most important research issues in this field is the so-called influence maximization problem, which essentially consists in selecting the most influential users (i.e., those who are able to maximize the spread of influence through the social network). Due to its practical importance in various applications (e.g., viral marketing), such a problem has been studied in several variants. Nevertheless, the current open challenge in the resolution of the influence maximization problem still concerns achieving a good trade-off between accuracy and computational time. In this context, based on independent cascade modeling of social networks, we propose a novel low-complexity and highly accurate algorithm for selecting an initial group of nodes to maximize the spread of influence in large-scale networks. In particular, the key idea consists in iteratively removing the overlap of influence spread induced by different seed nodes. The application to several numerical experiments based on real datasets proves that the proposed algorithm effectively finds practical near-optimal solutions of the addressed influence maximization problem in a computationally efficient fashion. Finally, the comparison with the state of the art algorithms demonstrates that in large scale scenarios the proposed approach shows higher performance in terms of influence spread and running time. © 2020 IEEE.}, type = {Conference paper}, publication_stage = {Final}, source = {Scopus}, note = {Cited by: 1} }
- Scarabaggio, P., Carli, R., Cavone, G. & Dotoli, M. (2020) Smart control strategies for primary frequency regulation through electric vehicles: A battery degradation perspective. IN Energies, 13.. doi:10.3390/en13174586
[BibTeX] [Abstract] [Download PDF]Nowadays, due to the decreasing use of traditional generators in favor of renewable energy sources, power grids are facing a reduction of system inertia and primary frequency regulation capability. Such an issue is exacerbated by the continuously increasing number of electric vehicles (EVs), which results in enforcing novel approaches in the grid operations management. However, from being an issue, the increase of EVs may turn to be a solution to several power system challenges. In this context, a crucial role is played by the so-called vehicle-to-grid (V2G) mode of operation, which has the potential to provide ancillary services to the power grid, such as peak clipping, load shifting, and frequency regulation. More in detail, EVs have recently started to be effectively used for one of the most traditional frequency regulation approaches: the so-called frequency droop control (FDC). This is a primary frequency regulation, currently obtained by adjusting the active power of generators in the main grid. Because to the decommissioning of traditional power plants, EVs are thus recognized as particularly valuable solutions since they can respond to frequency deviation signals by charging or discharging their batteries. Against this background, we address frequency regulation of a power grid model including loads, traditional generators, and several EVs. The latter independently participate in the grid optimization process providing the grid with ancillary services, namely the FDC. We propose two novel control strategies for the optimal control of the batteries of EVs during the frequency regulation service. On the one hand, the control strategies ensure re-balancing the power and stabilizing the frequency of the main grid. On the other hand, the approaches are able to satisfy different types of needs of EVs during the charging process. Differently from the related literature, where the EVs perspective is generally oriented to achieve the optimal charge level, the proposed approaches aim at minimizing the degradation of battery devices. Finally, the proposed strategies are compared with other state-of-the-art V2G control approaches. The results of numerical experiments using a realistic power grid model show the effectiveness of the proposed strategies under the actual operating conditions. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
@ARTICLE{Scarabaggio2020, author = {Scarabaggio, Paolo and Carli, Raffaele and Cavone, Graziana and Dotoli, Mariagrazia}, title = {Smart control strategies for primary frequency regulation through electric vehicles: A battery degradation perspective}, year = {2020}, journal = {Energies}, volume = {13}, number = {17}, doi = {10.3390/en13174586}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090919511&doi=10.3390%2fen13174586&partnerID=40&md5=d7f07f0a819d149b5f1c143b707e731d}, abstract = {Nowadays, due to the decreasing use of traditional generators in favor of renewable energy sources, power grids are facing a reduction of system inertia and primary frequency regulation capability. Such an issue is exacerbated by the continuously increasing number of electric vehicles (EVs), which results in enforcing novel approaches in the grid operations management. However, from being an issue, the increase of EVs may turn to be a solution to several power system challenges. In this context, a crucial role is played by the so-called vehicle-to-grid (V2G) mode of operation, which has the potential to provide ancillary services to the power grid, such as peak clipping, load shifting, and frequency regulation. More in detail, EVs have recently started to be effectively used for one of the most traditional frequency regulation approaches: the so-called frequency droop control (FDC). This is a primary frequency regulation, currently obtained by adjusting the active power of generators in the main grid. Because to the decommissioning of traditional power plants, EVs are thus recognized as particularly valuable solutions since they can respond to frequency deviation signals by charging or discharging their batteries. Against this background, we address frequency regulation of a power grid model including loads, traditional generators, and several EVs. The latter independently participate in the grid optimization process providing the grid with ancillary services, namely the FDC. We propose two novel control strategies for the optimal control of the batteries of EVs during the frequency regulation service. On the one hand, the control strategies ensure re-balancing the power and stabilizing the frequency of the main grid. On the other hand, the approaches are able to satisfy different types of needs of EVs during the charging process. Differently from the related literature, where the EVs perspective is generally oriented to achieve the optimal charge level, the proposed approaches aim at minimizing the degradation of battery devices. Finally, the proposed strategies are compared with other state-of-the-art V2G control approaches. The results of numerical experiments using a realistic power grid model show the effectiveness of the proposed strategies under the actual operating conditions. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).}, author_keywords = {Electric vehicle batteries (EVBs); Electric vehicles (EVs); Frequency droop control (FDC); Vehicle-to-grid (V2G)}, type = {Article}, publication_stage = {Final}, source = {Scopus}, note = {Cited by: 44; All Open Access, Gold Open Access, Green Open Access} }
- Scarabaggio, P., La Scala, M., Carli, R. & Dotoli, M. (2020) Analyzing the Effects of COVID-19 Pandemic on the Energy Demand: The Case of Northern Italy IN 12th AEIT International Annual Conference, AEIT 2020.. doi:10.23919/AEIT50178.2020.9241136
[BibTeX] [Abstract] [Download PDF]The COVID-19 crisis is profoundly influencing the global economic framework due to restrictive measures adopted by governments worldwide. Finding real-time data to correctly quantify this impact is very significant but not as straightforward. Nevertheless, an analysis of the power demand profiles provides insight into the overall economic trends. To accurately assess the change in energy consumption patterns, in this work we employ a multi-layer feed-forward neural network that calculates an estimation of the aggregated power demand in the north of Italy, (i.e, in one of the European areas that were most affected by the pandemics) in the absence of the COVID-19 emergency. After assessing the forecasting model reliability, we compare the estimation with the ground truth data to quantify the variation in power consumption. Moreover, we correlate this variation with the change in mobility behaviors during the lockdown period by employing the Google mobility report data. From this unexpected and unprecedented situation, we obtain some intuition regarding the power system macro-structure and its relation with the overall people’s mobility. © 2020 AEIT.
@CONFERENCE{Scarabaggio2020, author = {Scarabaggio, Paolo and La Scala, Massimo and Carli, Raffaele and Dotoli, Mariagrazia}, title = {Analyzing the Effects of COVID-19 Pandemic on the Energy Demand: The Case of Northern Italy}, year = {2020}, journal = {12th AEIT International Annual Conference, AEIT 2020}, doi = {10.23919/AEIT50178.2020.9241136}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097170993&doi=10.23919%2fAEIT50178.2020.9241136&partnerID=40&md5=a3abf95802bb66dc9a2d8715976cc126}, abstract = {The COVID-19 crisis is profoundly influencing the global economic framework due to restrictive measures adopted by governments worldwide. Finding real-time data to correctly quantify this impact is very significant but not as straightforward. Nevertheless, an analysis of the power demand profiles provides insight into the overall economic trends. To accurately assess the change in energy consumption patterns, in this work we employ a multi-layer feed-forward neural network that calculates an estimation of the aggregated power demand in the north of Italy, (i.e, in one of the European areas that were most affected by the pandemics) in the absence of the COVID-19 emergency. After assessing the forecasting model reliability, we compare the estimation with the ground truth data to quantify the variation in power consumption. Moreover, we correlate this variation with the change in mobility behaviors during the lockdown period by employing the Google mobility report data. From this unexpected and unprecedented situation, we obtain some intuition regarding the power system macro-structure and its relation with the overall people's mobility. © 2020 AEIT.}, author_keywords = {COVID-19; Lockdown; Machine learning; Neural networks; Power systems}, type = {Conference paper}, publication_stage = {Final}, source = {Scopus}, note = {Cited by: 15; All Open Access, Green Open Access} }
- Scarabaggio, P., Carli, R. & Dotoli, M. (2020) A game-theoretic control approach for the optimal energy storage under power flow constraints in distribution networks IN IEEE International Conference on Automation Science and Engineering., 1281 – 1286. doi:10.1109/CASE48305.2020.9216800
[BibTeX] [Abstract] [Download PDF]Traditionally, the management of power distribution networks relies on the centralized implementation of the optimal power flow and, in particular, the minimization of the generation cost and transmission losses. Nevertheless, the increasing penetration of both renewable energy sources and independent players such as ancillary service providers in modern networks have made this centralized framework inadequate. Against this background, we propose a noncooperative game-theoretic framework for optimally controlling energy storage systems (ESSs) in power distribution networks. Specifically, in this paper we address a power grid model that comprehends traditional loads, distributed generation sources and several independent energy storage providers, each owning an individual ESS. Through a rolling-horizon approach, the latter participate in the grid optimization process, aiming both at increasing the penetration of distributed generation and leveling the power injection from the transmission grid. Our framework incorporates not only economic factors but also grid stability aspects, including the power flow constraints. The paper fully describes the distribution grid model as well as the underlying market hypotheses and policies needed to force the energy storage providers to find a feasible equilibrium for the network. Numerical experiments based on the IEEE 33-bus system confirm the effectiveness and resiliency of the proposed framework. © 2020 IEEE.
@CONFERENCE{Scarabaggio20201281, author = {Scarabaggio, Paolo and Carli, Raffaele and Dotoli, Mariagrazia}, title = {A game-theoretic control approach for the optimal energy storage under power flow constraints in distribution networks}, year = {2020}, journal = {IEEE International Conference on Automation Science and Engineering}, volume = {2020-August}, pages = {1281 – 1286}, doi = {10.1109/CASE48305.2020.9216800}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094128798&doi=10.1109%2fCASE48305.2020.9216800&partnerID=40&md5=e4802c482f96ac90afd6c7a2c7f2b199}, abstract = {Traditionally, the management of power distribution networks relies on the centralized implementation of the optimal power flow and, in particular, the minimization of the generation cost and transmission losses. Nevertheless, the increasing penetration of both renewable energy sources and independent players such as ancillary service providers in modern networks have made this centralized framework inadequate. Against this background, we propose a noncooperative game-theoretic framework for optimally controlling energy storage systems (ESSs) in power distribution networks. Specifically, in this paper we address a power grid model that comprehends traditional loads, distributed generation sources and several independent energy storage providers, each owning an individual ESS. Through a rolling-horizon approach, the latter participate in the grid optimization process, aiming both at increasing the penetration of distributed generation and leveling the power injection from the transmission grid. Our framework incorporates not only economic factors but also grid stability aspects, including the power flow constraints. The paper fully describes the distribution grid model as well as the underlying market hypotheses and policies needed to force the energy storage providers to find a feasible equilibrium for the network. Numerical experiments based on the IEEE 33-bus system confirm the effectiveness and resiliency of the proposed framework. © 2020 IEEE.}, type = {Conference paper}, publication_stage = {Final}, source = {Scopus}, note = {Cited by: 11} }
- Carli, R., Cavone, G., Epicoco, N., Scarabaggio, P. & Dotoli, M. (2020) Model predictive control to mitigate the COVID-19 outbreak in a multi-region scenario. IN Annual Reviews in Control, 50.373 – 393. doi:10.1016/j.arcontrol.2020.09.005
[BibTeX] [Abstract] [Download PDF]The COVID-19 outbreak is deeply influencing the global social and economic framework, due to restrictive measures adopted worldwide by governments to counteract the pandemic contagion. In multi-region areas such as Italy, where the contagion peak has been reached, it is crucial to find targeted and coordinated optimal exit and restarting strategies on a regional basis to effectively cope with possible onset of further epidemic waves, while efficiently returning the economic activities to their standard level of intensity. Differently from the related literature, where modeling and controlling the pandemic contagion is typically addressed on a national basis, this paper proposes an optimal control approach that supports governments in defining the most effective strategies to be adopted during post-lockdown mitigation phases in a multi-region scenario. Based on the joint use of a non-linear Model Predictive Control scheme and a modified Susceptible-Infected-Recovered (SIR)-based epidemiological model, the approach is aimed at minimizing the cost of the so-called non-pharmaceutical interventions (that is, mitigation strategies), while ensuring that the capacity of the network of regional healthcare systems is not violated. In addition, the proposed approach supports policy makers in taking targeted intervention decisions on different regions by an integrated and structured model, thus both respecting the specific regional health systems characteristics and improving the system-wide performance by avoiding uncoordinated actions of the regions. The methodology is tested on the COVID-19 outbreak data related to the network of Italian regions, showing its effectiveness in properly supporting the definition of effective regional strategies for managing the COVID-19 diffusion. © 2020 Elsevier Ltd
@ARTICLE{Carli2020373, author = {Carli, Raffaele and Cavone, Graziana and Epicoco, Nicola and Scarabaggio, Paolo and Dotoli, Mariagrazia}, title = {Model predictive control to mitigate the COVID-19 outbreak in a multi-region scenario}, year = {2020}, journal = {Annual Reviews in Control}, volume = {50}, pages = {373 – 393}, doi = {10.1016/j.arcontrol.2020.09.005}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097753585&doi=10.1016%2fj.arcontrol.2020.09.005&partnerID=40&md5=adce49e71a999948867e93de3ae2e142}, abstract = {The COVID-19 outbreak is deeply influencing the global social and economic framework, due to restrictive measures adopted worldwide by governments to counteract the pandemic contagion. In multi-region areas such as Italy, where the contagion peak has been reached, it is crucial to find targeted and coordinated optimal exit and restarting strategies on a regional basis to effectively cope with possible onset of further epidemic waves, while efficiently returning the economic activities to their standard level of intensity. Differently from the related literature, where modeling and controlling the pandemic contagion is typically addressed on a national basis, this paper proposes an optimal control approach that supports governments in defining the most effective strategies to be adopted during post-lockdown mitigation phases in a multi-region scenario. Based on the joint use of a non-linear Model Predictive Control scheme and a modified Susceptible-Infected-Recovered (SIR)-based epidemiological model, the approach is aimed at minimizing the cost of the so-called non-pharmaceutical interventions (that is, mitigation strategies), while ensuring that the capacity of the network of regional healthcare systems is not violated. In addition, the proposed approach supports policy makers in taking targeted intervention decisions on different regions by an integrated and structured model, thus both respecting the specific regional health systems characteristics and improving the system-wide performance by avoiding uncoordinated actions of the regions. The methodology is tested on the COVID-19 outbreak data related to the network of Italian regions, showing its effectiveness in properly supporting the definition of effective regional strategies for managing the COVID-19 diffusion. © 2020 Elsevier Ltd}, author_keywords = {COVID-19; Epidemic control; MPC; Multi-region SIR model; Pandemic modeling; Post-lockdown mitigation strategies; SIR model}, type = {Article}, publication_stage = {Final}, source = {Scopus}, note = {Cited by: 83; All Open Access, Green Open Access} }
- Scarabaggio, P., Carli, R., La Scala, M. & Dotoli, M. (2020) Effects of COVID-19 on electricity demand in Northern Italy; [Effetti del COVID-19 sulla domanda di energia elettrica nel Nord Italia]. IN Energia Elettrica, 97.41 – 51.
[BibTeX] [Abstract] [Download PDF]Technical analysis of the effects of the COVID-19 pandemic on electricity demand: the case of Northern Italy. Estimation of the impact of social mobility on electricity consumption. Future challenges and prospects.
@ARTICLE{Scarabaggio202041, author = {Scarabaggio, Paolo and Carli, Raffaele and La Scala, Massimo and Dotoli, Mariagrazia}, title = {Effects of COVID-19 on electricity demand in Northern Italy; [Effetti del COVID-19 sulla domanda di energia elettrica nel Nord Italia]}, year = {2020}, journal = {Energia Elettrica}, volume = {97}, number = {5}, pages = {41 – 51}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85148942790&partnerID=40&md5=a3679ff0d5aca129d11834c5886fe935}, abstract = {Technical analysis of the effects of the COVID-19 pandemic on electricity demand: the case of Northern Italy. Estimation of the impact of social mobility on electricity consumption. Future challenges and prospects.}, type = {Article}, publication_stage = {Final}, source = {Scopus}, note = {Cited by: 0} }
- Scarabaggio, P., Grammatico, S., Carli, R. & Dotoli, M. (2020) A distributed, rolling-horizon demand side management algorithm under wind power uncertainty IN IFAC-PapersOnLine., 12620 – 12625. doi:10.1016/j.ifacol.2020.12.1830
[BibTeX] [Abstract] [Download PDF]In this paper, we consider a smart grid where users behave selfishly, aiming at minimizing cost in the presence of uncertain wind power availability. We adopt a demand side management (DSM) model, where active users (so-called prosumers) have both private generation and local storage availability. These prosumers participate to the DSM strategy by updating their energy schedule, seeking to minimize their local cost, given their local preferences and the global grid constraints. The energy price is defined as a function of the aggregate load and the wind power availability. We model the resulting problem as a non-cooperative Nash game and propose a semi-decentralized algorithm to compute an equilibrium. To cope with the uncertainty in the wind power, we adopt a rolling-horizon approach, and in addition we use a stochastic optimization technique. We generate several wind power production scenarios from a defined probability density function (PDF), determining an approximate stochastic cost function. Simulations results on a real dataset show that the proposed approach generates lower individual costs compared to a standard expected value approach. Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license
@CONFERENCE{Scarabaggio202012620, author = {Scarabaggio, Paolo and Grammatico, Sergio and Carli, Raffaele and Dotoli, Mariagrazia}, title = {A distributed, rolling-horizon demand side management algorithm under wind power uncertainty}, year = {2020}, journal = {IFAC-PapersOnLine}, volume = {53}, number = {2}, pages = {12620 – 12625}, doi = {10.1016/j.ifacol.2020.12.1830}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85105077171&doi=10.1016%2fj.ifacol.2020.12.1830&partnerID=40&md5=ee3d9dd2c0187078aed713ccc87a026b}, abstract = {In this paper, we consider a smart grid where users behave selfishly, aiming at minimizing cost in the presence of uncertain wind power availability. We adopt a demand side management (DSM) model, where active users (so-called prosumers) have both private generation and local storage availability. These prosumers participate to the DSM strategy by updating their energy schedule, seeking to minimize their local cost, given their local preferences and the global grid constraints. The energy price is defined as a function of the aggregate load and the wind power availability. We model the resulting problem as a non-cooperative Nash game and propose a semi-decentralized algorithm to compute an equilibrium. To cope with the uncertainty in the wind power, we adopt a rolling-horizon approach, and in addition we use a stochastic optimization technique. We generate several wind power production scenarios from a defined probability density function (PDF), determining an approximate stochastic cost function. Simulations results on a real dataset show that the proposed approach generates lower individual costs compared to a standard expected value approach. Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license}, author_keywords = {Demand side management; Sample average approximation; Smart grid; Stochastic optimization}, type = {Conference paper}, publication_stage = {Final}, source = {Scopus}, note = {Cited by: 3; All Open Access, Gold Open Access, Green Open Access} }
- Carli, R., Cavone, G., Epicoco, N., Di Ferdinando, M., Scarabaggio, P. & Dotoli, M. (2020) Consensus-Based Algorithms for Controlling Swarms of Unmanned Aerial Vehicles. IN Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12338 LNCS.84 – 99. doi:10.1007/978-3-030-61746-2_7
[BibTeX] [Abstract] [Download PDF]Multiple Unmanned Aerial Vehicles (multi-UAVs) applications are recently growing in several fields, ranging from military and rescue missions, remote sensing, and environmental surveillance, to meteorology, logistics, and farming. Overcoming the limitations on battery lifespan and on-board processor capabilities, the coordinated use of multi-UAVs is indeed more suitable than employing a single UAV in certain tasks. Hence, the research on swarm of UAVs is receiving increasing attention, including multidisciplinary aspects, such as coordination, aggregation, network communication, path planning, information sensing, and data fusion. The focus of this paper is on defining novel control strategies for the deployment of multi-UAV systems in a distributed time-varying set-up, where UAVs rely on local communication and computation. In particular, modeling the dynamics of each UAV by a discrete-time integrator, we analyze the main swarm intelligence strategies, namely flight formation, swarm tracking, and social foraging. First, we define a distributed control strategy for steering the agents of the swarm towards a collection point. Then, we cope with the formation control, defining a procedure to arrange agents in a family of geometric formations, where the distance between each pair of UAVs is predefined. Subsequently, we focus on swarm tracking, defining a distributed mechanism based on the so-called leader-following consensus to move the entire swarm in accordance with a predefined trajectory. Moreover, we define a social foraging strategy that allows agents to avoid obstacles, by imposing on-line a time-varying formation pattern. Finally, through numerical simulations we show the effectiveness of the proposed algorithms. © 2020, Springer Nature Switzerland AG.
@ARTICLE{Carli202084, author = {Carli, Raffaele and Cavone, Graziana and Epicoco, Nicola and Di Ferdinando, Mario and Scarabaggio, Paolo and Dotoli, Mariagrazia}, title = {Consensus-Based Algorithms for Controlling Swarms of Unmanned Aerial Vehicles}, year = {2020}, journal = {Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)}, volume = {12338 LNCS}, pages = {84 – 99}, doi = {10.1007/978-3-030-61746-2_7}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85093852465&doi=10.1007%2f978-3-030-61746-2_7&partnerID=40&md5=1c7da6000e4015880227c1eafe608f20}, abstract = {Multiple Unmanned Aerial Vehicles (multi-UAVs) applications are recently growing in several fields, ranging from military and rescue missions, remote sensing, and environmental surveillance, to meteorology, logistics, and farming. Overcoming the limitations on battery lifespan and on-board processor capabilities, the coordinated use of multi-UAVs is indeed more suitable than employing a single UAV in certain tasks. Hence, the research on swarm of UAVs is receiving increasing attention, including multidisciplinary aspects, such as coordination, aggregation, network communication, path planning, information sensing, and data fusion. The focus of this paper is on defining novel control strategies for the deployment of multi-UAV systems in a distributed time-varying set-up, where UAVs rely on local communication and computation. In particular, modeling the dynamics of each UAV by a discrete-time integrator, we analyze the main swarm intelligence strategies, namely flight formation, swarm tracking, and social foraging. First, we define a distributed control strategy for steering the agents of the swarm towards a collection point. Then, we cope with the formation control, defining a procedure to arrange agents in a family of geometric formations, where the distance between each pair of UAVs is predefined. Subsequently, we focus on swarm tracking, defining a distributed mechanism based on the so-called leader-following consensus to move the entire swarm in accordance with a predefined trajectory. Moreover, we define a social foraging strategy that allows agents to avoid obstacles, by imposing on-line a time-varying formation pattern. Finally, through numerical simulations we show the effectiveness of the proposed algorithms. © 2020, Springer Nature Switzerland AG.}, author_keywords = {Swarm intelligence; Trajectory control; Unmanned Aerial Vehicles}, type = {Conference paper}, publication_stage = {Final}, source = {Scopus}, note = {Cited by: 23} }
2019
- Carli, R., Cavone, G., Dotoli, M., Epicoco, N. & Scarabaggio, P. (2019) Model predictive control for thermal comfort optimization in building energy management systems IN Conference Proceedings – IEEE International Conference on Systems, Man and Cybernetics., 2608 – 2613. doi:10.1109/SMC.2019.8914489
[BibTeX] [Abstract] [Download PDF]Model Predictive Control (MPC) has recently gained special attention to efficiently regulate Heating, Ventilation and Air Conditioning (HVAC) systems of buildings, since it explicitly allows energy savings while maintaining thermal comfort criteria. In this paper we propose a MPC algorithm for the on-line optimization of both the indoor thermal comfort and the related energy consumption of buildings. We use Fanger’s Predicted Mean Vote (PMV) as thermal comfort index, while to predict the energy performance of the building, we adopt a simplified thermal model. This allows computing optimal control actions by defining and solving a tractable non-linear optimization problem that incorporates the PMV index into the MPC cost function in addition to a term accounting for energy saving. The proposed MPC approach is implemented on a building automation system deployed in an office building located at the Polytechnic of Bari (Italy). Several on-field tests are performed to assess the applicability and efficacy of the control algorithm in a real environment against classical thermal comfort control approach based on the use of thermostats. © 2019 IEEE.
@CONFERENCE{Carli20192608, author = {Carli, Raffaele and Cavone, Graziana and Dotoli, Mariagrazia and Epicoco, Nicola and Scarabaggio, Paolo}, title = {Model predictive control for thermal comfort optimization in building energy management systems}, year = {2019}, journal = {Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics}, volume = {2019-October}, pages = {2608 – 2613}, doi = {10.1109/SMC.2019.8914489}, url = {https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076778873&doi=10.1109%2fSMC.2019.8914489&partnerID=40&md5=3c982fb93adbcfb5202b48b60ad0f22d}, abstract = {Model Predictive Control (MPC) has recently gained special attention to efficiently regulate Heating, Ventilation and Air Conditioning (HVAC) systems of buildings, since it explicitly allows energy savings while maintaining thermal comfort criteria. In this paper we propose a MPC algorithm for the on-line optimization of both the indoor thermal comfort and the related energy consumption of buildings. We use Fanger's Predicted Mean Vote (PMV) as thermal comfort index, while to predict the energy performance of the building, we adopt a simplified thermal model. This allows computing optimal control actions by defining and solving a tractable non-linear optimization problem that incorporates the PMV index into the MPC cost function in addition to a term accounting for energy saving. The proposed MPC approach is implemented on a building automation system deployed in an office building located at the Polytechnic of Bari (Italy). Several on-field tests are performed to assess the applicability and efficacy of the control algorithm in a real environment against classical thermal comfort control approach based on the use of thermostats. © 2019 IEEE.}, type = {Conference paper}, publication_stage = {Final}, source = {Scopus}, note = {Cited by: 25} }